Skip to main content

Part of the book series: Developments in Fullerene Science ((DFUL,volume 6))

Abstract

We address the hypothesis that fullerenes are an important carrier phase for noble gases in carbonaceous chondrite meteorites. Unlike other proposed carbon carriers, nanodiamond, SiC, graphite and phase Q, fullerenes are extractable in an organic solvent. It is this unique property, in fact, this may be why fullerene molecules or fullerene-related compounds were overlooked as a carrier phase of noble gases in meteorites. To further evaluate how fullerenes trap noble gases within their closed-cage structure, we compared the natural meteorite fullerenes to synthetic “Graphitic Smokes” soot. High Resolution Transmission Electron Microscopy used to directly image the fullerene extracted residues clearly showed that C60 and higher fullerenes, predominantly C > 100, are indeed the carrier phase of the noble gases measured in the Tagish Lake, Murchison and Allende carbonaceous chondrite meteorites, and synthetic “Graphitic Smokes” material. The implication for the role of fullerenes, which trap noble gases condensed in the atmosphere of carbon-rich stars, is that the true nature of terrestrial planetary atmospheres is presolar in origin. Fullerene, like other carbon carriers, were then transported to the solar nebula, accreted into carbonaceous chondrites and delivered to the terrestrial planets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anders, E., Higuchi, H., Gros, J., Takahashi, H. and Morgan, J.W. (1975) Extinct superheavy elements in the Allende meteorite. Science, 190, 1262–1268.

    CAS  Google Scholar 

  • Bajt, S., Chapman, H.N., Flynn, G.J. and Keller, L.P. (1996) A possibility of the presence of C60 in interplanetary dust particles (abstract). Meteorit. Planet. Sci., 31(suppl.), A11.

    Google Scholar 

  • Becker, L. and Bunch, T.E. (1997) Fullerenes, fulleranes and polycyclic aromatic hydrocarbons in the Allende Meteorite. Meteorit. Planet. Sci., 32, 479–487.

    CAS  Google Scholar 

  • Becker, L., McDonald, G.D. and Bada, J.L. (1993) Carbon onions in the Allende meteorite. Nature, 361, 595.

    Article  CAS  Google Scholar 

  • Becker, L., Bada, J.L., Winans, R.E. and Bunch T.E. (1994a) Fullerenes in the Allende meteorite. Nature, 372, 507–508.

    Article  CAS  Google Scholar 

  • Becker, L., Bada, J.L., Winans, R.E., Hunt, J.E., Bunch, T.E. and French, B.E. (1994b) Fullerenes in the 1.85 Billion-Year-Old Sudbury Impact Structure. Science, 265, 642–645.

    Article  CAS  Google Scholar 

  • Becker, L., Bunch, T.E. and Allamandola, L. (1999) Higher fullerenes in the Allende meteorite. Nature, 400, 227–228.

    Article  CAS  Google Scholar 

  • Becker, L., Poreda, R.J. and Bunch, T.E. (2000) Fullerene: A new extraterrestrial carbon carrier phase for noble gases. Proc. Natl. Acad. Sci., 97, 2979–2983.

    Article  CAS  Google Scholar 

  • Becker, L., Poreda, R.J., Hunt, A.G., Bunch, T.E. and Rampino, M. (2001) Impact event at the Permian-Triassic boundary: Evidence from extraterrestrial noble gases in fullerenes. Science, 291, 1530–1533.

    Article  CAS  Google Scholar 

  • Brown, P.G., Hildebrand, A.R., Zolensky, M.E., Grady, M., Clayton, R.N., Mayeda, T.K., Tagliaferri, E., Spalding, R., MacRea, N.D., Hoffman, E.L., Mittlefehldt, D.W., Wacker, J.F., Bird, J.A., Campbell, M.D., Carpenter, R., Gingerich, H., Glatiotis, M., Greiner, E., Mazur, M.J., McCausland, P. JA., Plotkin, H., and Mazur, T.R. (2000) The fall, recovery, orbit, and composition of the Tagish Lake meteorite: a new type of carbonaceous chondrite. Science, 90, 320–325.

    Article  Google Scholar 

  • Buseck, P.R. (2002) Geological fullerenes: review and analysis. Earth Planet. Sci. Lett., 203, 781–792.

    Article  CAS  Google Scholar 

  • Buseck, P.R., Tsipursky, S.J. and Hettich, R. (1992) Fullerenes from the geological environment. Science, 257, 215–217.

    Article  CAS  Google Scholar 

  • Daly, T.K., Buseck, P.R., Williams, P. and Lewis, C.F. (1993) Fullerenes from a fulgurite. Science, 259, 1599–1601.

    Article  CAS  Google Scholar 

  • de Vries, M.S., Wendt, H.R., Hunziker, H., Peterson, E. and Chang, S. (1993) A search for C60 in carbonaceous chondrites. Geochim. Cosmochim. Acta, 57, 933–940.

    Article  Google Scholar 

  • Ehrenfreund P., Cami, J., Dartois, E. and Foing, B.H. (1997) Diffuse interstellar bands towards BD63+ 1964 A new reference target. Astron. Astrophys., 318, L28–L31.

    Google Scholar 

  • Fanale, F.P. and Cannon, W.A. (1972) Origin of planetary primordial rare gas: the possible role of adsorption. Geochim. Comochim. Acta, 36, 319–328.

    Article  CAS  Google Scholar 

  • Flynn, G.J., Keller, L.P., Feser, M., Wirick, S. and Jacobsen, C. (2003) The origin of organic matter in the solar system: Evidence from the interplanetary dust particles. Geochim. Cosmochim. Acta, 67, 4791–4806.

    Article  CAS  Google Scholar 

  • Foing, B.H. and Ehrenfreund, P. (1994) Detection of two interstellar absorption bands coincident with spectral features of C60 +. Nature, 369, 296–299.

    Article  CAS  Google Scholar 

  • Foing, B.H. and Ehrenfreund, P. (1997) New evidence for interstellar C60 +. Astron. Astrophys., 317, L59–63.

    CAS  Google Scholar 

  • Giblin, D.E., Gross, M.L., Saunders, M., Jimenez-Vazquez, H.A. and Cross, R.J. (1997) Incorporation of helium and endohedral complexes of C60 and C70 containing noble-gas atoms: A tandem mass spectrometry study. J. Am. Chem. Soc., 119, 9883–9890.

    Article  CAS  Google Scholar 

  • Goel, A., Howard, J.B., Vander Sande, J.B. (2004) Size analysis of single fullerene molecules by electron microscopy. Carbon, 42, 1907–1915.

    Article  CAS  Google Scholar 

  • Harris, P.J.F. and Vis, R.D. (2003) High-Resolution transmission electron microscopy of carbon and nanocrystals in the Allende meteorite. Proc. R. Soc. London A, 459, 2069–2076.

    CAS  Google Scholar 

  • Harris, P.J.F., Vis, R.D. and Heymann, D. (2000) Fullerene-like carbon nanostructures in Allende meteorite. Earth Planet. Sci. Lett., 183, 355–359.

    Article  CAS  Google Scholar 

  • Heymann, D. (1986) Buckminsterfullerenes its siblings and soot: Carriers of trapped inert gases in meteorites? J. Geophys. Res., 91, E135–E138.

    CAS  Google Scholar 

  • Heymann, D. (1995) Search for extractable fullerenes in the Allende meteorite. Meteoritics, 30, 436–438.

    CAS  Google Scholar 

  • Heymann, D. (1997) Fullerenes and fulleranes in meteorites revisited. Astrophys. J., 489, L111–L114.

    Article  CAS  Google Scholar 

  • Hunten, D.M., Pepin, R.O. and Owen, T.C. (1988) Planetary Atmospheres. In Meteorites and the Early Solar System, J.F. Kerridge and M.S. Matthews, Eds., 565–591, University of Arizona Press, Tucson, Arizona, USA.

    Google Scholar 

  • Huss, G.R. (1990) Ubiquitous interstellar diamond and SiC in primitive chondrites: Abundances reflect metamorphism. Nature, 347, 159–162.

    Article  CAS  Google Scholar 

  • Kerridge, J.F. and Matthews, M.S., Eds. (1988) Meteorites and the Early Solar System, 1269p., University of Arizona Press, Tucson, Arizona, USA.

    Google Scholar 

  • Kimura, T., Sugai, T., Shinohara, H., Goto, T., Tohji, K. and Matsuka, I. (1995) Preferential arc-discharge production of higher fullerenes. Chem. Phys. Lett., 246, 571–576.

    Article  CAS  Google Scholar 

  • Krätschmer, W., Lamb, L.D., Fostiropoulos, K. and Huffman, D.R. (1990) Solid C60: A new form of carbon. Nature, 347, 354–357.

    Article  Google Scholar 

  • Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F. and Smalley, R.E. (1985) C60: Buckminsterfullerene. Nature, 318, 162–165.

    Article  CAS  Google Scholar 

  • Kroto, H.W. (1988) Space, stars, C60 and soot. Science, 243, 1139–1142.

    Article  Google Scholar 

  • Kroto, H.W. (1989) The role of linear and spherodal carbon molecules in interstellar grain formation. Ann. Phys., 14, 169–173.

    CAS  Google Scholar 

  • Kroto, H.W. and Jura, M. (1992) Circumstellar and interstellar and their analogues. Astron. Astrophys., 263, 275–280.

    CAS  Google Scholar 

  • Lewis, R.S., Srinivasin, B. and Anders, E. (1975) Host phase of a strange xenon component in Allende. Science, 190, 1251–1262.

    Article  CAS  Google Scholar 

  • Lewis, R.S., Ming, T., Wacker, J.F., Anders, A. and Steel, E. (1987) Interstellar diamonds in meteorites. Nature, 326, 160–162.

    Article  CAS  Google Scholar 

  • Mossman, D., Eigendorf, G., Tokaryk, D., Gauthier-Lafaye, F., Guckert, K.D., Melezhik, V. and Farrow, C.E.G. (2003) Testing for fullerenes in geologic materials: Oklo carbonaceous substances, Karelian shungites, Sudbury Black Tuff. Geology, 31, 255–258.

    Article  CAS  Google Scholar 

  • Nuth, J.A. (1985) Meteoritic evidence that graphitic carbon is rare in the ISM. Nature, 318, 166–168.

    Article  CAS  Google Scholar 

  • Olsen, E.K., Swindle, T.D., Nuth, J.A. and Ferguson, F. (2000) Noble gases in graphitic smokes. Lunar Planet. Sci., 31, abstract #1479, Lunar and Planetary Institute, Houston, Texas, USA.

    Google Scholar 

  • Ott, U., Mack, R. and Chang, S. (1981) Trapping noble gas-rich separates from the Allende meteorite. Geochim. Cosmochim. Acta, 45, 1211–1237.

    Article  Google Scholar 

  • Ozima, M. and Podosek, F.A., Eds. (2001) Noble Gas Geochemistry, 2 nd Ed., 300p., Cambridge University Press, Cambridge, United Kingdom.

    Google Scholar 

  • Pepin, R.O. (1991) On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus, 92, 2–79.

    Article  CAS  Google Scholar 

  • Pizzarello, S., Hang Y., Becker, L., Podera R.J., Nieman R.A., Cooper, G. and Williams, M. (2001) The organic content of the Tagish Lake meteorite. Science, 293, 2236–2239.

    Article  CAS  Google Scholar 

  • Porcelli, D. and Pepin, R.O. (1997) Rare gas constraints on early earth history. In Origin of the Earth and Moon, R.M. Canup and K. Righter, Eds., 435–458, University of Arizona Press, Tucson, Arizona, USA.

    Google Scholar 

  • Poreda, R.J. and Becker, L. (2003) Fullerenes and interplanetary dust at the Permian-Triassic boundary. Astrobiology, 3, 120–136.

    Article  Google Scholar 

  • Radicati di Brozolo, F., Bunch, T.E., Fleming, R.H. and Macklin, J. (1994) Fullerenes in an impact crater on the LDEF spacecraft. Nature, 369, 37–40.

    Article  CAS  Google Scholar 

  • Rietmeijer, F.J.M., Rotundi, A. and Heymann, D. (2004) C60 and giant fullerenes in foot condensed in vapors with variable C/H2 ratios. Fullerene, Nanotubes and Carbon Nanostructures, 12, 659–680.

    Article  CAS  Google Scholar 

  • Rietmeijer, F.J.M., Borg, J. and Rotundi, A. (2005) Revisiting C60 and fullerenes in carbonaceous chondrites and interplanetary dust particles: HRTEM and Raman spectroscopy. Lunar Planet. Sci., 36, abstract #1225, Lunar and Planetary Institute, Houston, Texas, USA.

    Google Scholar 

  • Robl, T.L. and Davis, B.H. (1993) Comparison of the HF-HCL and HFBF3 maceration techniques and the chemistry of the resultant organic concentrates. Org. Geochem., 20, 249–255.

    Article  Google Scholar 

  • Rotundi, A., Rietmeijer, F.J.M., Colangeli, L., Mennella, V., Palumbo, P. and Bussoletti, E. (1998) Identification of carbon forms in soot materials of astrophysical interest. Astron. Astrophys., 329, 1087–1096.

    CAS  Google Scholar 

  • Sadana, A.K., Liang, F., Brinson, B., Arepalli, S., Farhat, S., Hauge, R.H., Smalley, R.E. and Billups, W.E. (2005) Functionalization and extraction of large fullerenes and carboncoated metal formed during the synthesis of single wall carbon nanotubes by laser oven, direct current arc, and high-pressure carbon monoxide production methods. J. Phys. Chem. B, 109, 4416–4418.

    Article  CAS  Google Scholar 

  • Saunders, M., Jimenez-Vasquez, H.A., Cross, R.J. and Poreda, R.J. (1993) Stable compounds of helium and neon He@C60 and He@C70. Science, 259, 1428–1431.

    Article  CAS  Google Scholar 

  • Smith, P.P.K. and Buseck, P.R. (1981) Graphitic carbon in the Allende meteorite a microstructural study. Science, 212, 322–324.

    Article  CAS  Google Scholar 

  • Swindle, T. (1988) Trapped noble gases in meteorites. In Meteorites and the Early Solar System, J. F. Kerridge and M.S. Matthews, Eds., 535–564, University of Arizona Press, Tucson, Arizona, USA.

    Google Scholar 

  • Ugarte, D. (1992) Curling and closure of graphitic networks under electron beam irradiation. Nature, 359, 707–709.

    Article  CAS  Google Scholar 

  • Webster, A. (1991) Comparison of a calculated spectrum of C60H60 with the unidentified astronomical infrared emission features. Nature, 352, 412–416.

    Article  CAS  Google Scholar 

  • Webster, A. (1993) Fullerenes, fulleranes and diffuse interstellar bands. Monthly Not. Roy. Astron. Soc., 255, 41p.

    Google Scholar 

  • Wieler, R., Anders, E., Baur, H., Lewis, R.S. and Signer, P. (1991) Noble gases in “phase Q”: Closed-system etching of an Allende residue. Geochim. Cosmochim. Acta, 55, 1709–1722.

    Article  CAS  Google Scholar 

  • Wieler, R., Anders, E., Baur, H., Lewis, R.S. and Signer, P. (1992) Characterization of Qgases and other noble gas components in the Murchison meteorite. Geochimica. Cosmochimica. Acta, 56, 2907–2921.

    Article  CAS  Google Scholar 

  • Ying, Y., Saini, R.K., Liang, F., Sadana, A.K and Billups, W.E. (2003) Funtionalization of the carbon nanotubes by free radicals. Org. Lett., 5, 1471–1473.

    Article  CAS  Google Scholar 

  • Zahnle, K. (1990) Xenon fractionation in porous planetesimals. Geochim. Cosmochim. Acta, 54, 2577–2586.

    Article  CAS  Google Scholar 

  • Zinner, E., Amari, S., Wopenka, B. and Lewis, R.S. (1995) Interstellar graphite in meteorites: Isotopic and structural properties of single graphite grains from Murchison. Meteoritics, 30, 209–226.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Becker, L., Poreda, R.J., Nuth, J.A., Ferguson, F.T., Liang, F., Edward Billups, W. (2006). Fullerenes in Meteorites and the Nature of Planetary Atmospheres. In: Natural Fullerenes and Related Structures of Elemental Carbon. Developments in Fullerene Science, vol 6. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4135-7_6

Download citation

Publish with us

Policies and ethics