Skip to main content

Natural C60 and Large Fullerenes: A Matter of Detection and Astrophysical Implications

  • Chapter
Natural Fullerenes and Related Structures of Elemental Carbon

Part of the book series: Developments in Fullerene Science ((DFUL,volume 6))

Abstract

Fullerene was theoretically predicted and experimentally discovered, but its detection in laboratory studies is still underrepresented with respect to its theoretical abundance. Recent High Resolution Transmission Electron Microscopy (HRTEM) studies of soot samples, however, lead to single fullerene molecule detection in higher amounts than was previously established. HRTEM is able to identify fullerenes even if they are only present in small quantities that would be below the detection limit of chemical techniques. Fullerenes will probably remain largely undetected until higher signal to noise ratio measurements are used to search for them. Such studies could yield different conclusions on fullerene abundances both in terrestrial and in extraterrestrial samples. For the latter, important astrophysical implications have to be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ash, R.D., Russell, S.S., Wright, I.P. and Pillinger, C.T. (1993) Minor high temperature components confirmed in carbonaceous chondrites by stepped combustion using a new sensitive static mass spectrometer (abstract). Lunar Planet. Sci., 22, 35–36, Lunar and Planetary Institute, Houston, Texas, USA.

    Google Scholar 

  • Baccaro, S., Cataldo, F., Cecilia, A., Cemmi, A., Padella, F and Santini, A. (2003) Interaction between reinforce carbon black and polymeric matrix for industrial applications. Nuclear Instr. Methods Phys. Res. B, 208, 191–194.

    Article  CAS  Google Scholar 

  • Bandow, S., Takizawa, M., Hirahara, K., Yudasaka, M. and Iijima, S. (2001) Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes. Chem. Phys. Lett., 337, 48–54.

    Article  CAS  Google Scholar 

  • Bajt, S., Chapman, H.N., Flynn, G.J. and Keller, L.P. (1996) Carbon characterization in interplanetary dust particles with a scanning transmission X-ray microscope (abstract). Lunar Planet. Sci., 27, 57–58, Lunar and Planetary Institute, Houston, Texas, USA.

    Google Scholar 

  • Basiuk, V.A., Albarrána, G., Basiuk, E.V. and Saniger, J.-M. (2004) Stability of interstellar fullerenes under high-dose γ-irradiation: New data. Adv. Space Res., 33, 72–75.

    Article  Google Scholar 

  • Becker, L. and Bunch, T.E. (1997) Fullerenes, fulleranes and polycyclic aromatic hydrocarbons in the Allende meteorite. Meteorit. Planet. Sci., 32, 479–487.

    CAS  Google Scholar 

  • Becker, L., Bada, J.L., Winas, R.E. and Bunch, T.E. (1994) Fullerenes in the Allende meteorite. Nature, 372, 507–507.

    Article  CAS  Google Scholar 

  • Becker, L., Bunch, T.E. and Allamandola, L.J. (1999) Higher fullerenes in the Allende meteorite. Nature, 400, 227–228.

    Article  CAS  Google Scholar 

  • Bethune, D.S., Kiang, C.H., de Vries, M.S., Gorman, G., Savoy, R., Vazquez, J. and Beyers, R. (1993) Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls. Nature, 363, 605–607.

    Article  CAS  Google Scholar 

  • Buseck, P.R. (2002) Geological fullerenes: review and analysis. Earth Planet. Sci. Lett., 203, 781–792.

    Article  CAS  Google Scholar 

  • Buseck, P.R., Tsipurski, S.J. and Hettich, R. (1992) Fullerenes from the geological environment. Nature, 247, 215–217.

    Google Scholar 

  • Cherchneff, I., Le Teuff, Y.H., Williams, P.M. and Tielens, A.G.G.M. (2000) Dust formation in carbon-rich Wolf-Rayet stars? I. Chemistry of small carbon clusters and silicon species. Astron. Astrophys., 357, 572–580.

    CAS  Google Scholar 

  • Chhowalla, M., Wang, H., Sano, N., Teo, K.B.K. and Amaratunga, G.A.J. (2003) Carbon onions: Carriers of the 217.5-nm interstellar absorption feature. Phys. Rev. Lett., 90, 155504-1–155504-4.

    Article  Google Scholar 

  • Curl, R.C. and Smalley, R.E. (1988) Probing C60. Science, 242, 1017–1022.

    Article  CAS  Google Scholar 

  • De Heer, W.A. and Ugarte, D. (1993) Carbon onions produced by heat treatment of carbon soot and their relation to the 217.5 nm interstellar absorption feature. Chem. Phys. Lett., 207, 480–486.

    Article  Google Scholar 

  • DeVries, M.S., Reihs, K., Wendt, H.R., Golden, W.G., Hunziker, H.E., Fleming, R., Peterson, E. and Chang, S. (1993) A search for C60 in carbonaceous chondrites. Geochim. Cosmochim. Acta, 57, 933–935.

    Article  CAS  Google Scholar 

  • Derenne, S., Robert, F., Binet, L., Gourier, D., Rouzaud, J.-N. and Largeau, C. (2002) Use of combined spectroscopic and microscopic tools for deciphering the chemical structure and origin of the insoluble organic matter in the Orgueil and Murchison meteorites. Lunar Planet. Sci., 33, abstract #1182, Lunar and Planetary Institute, Houston, Texas, USA, CD-ROM.

    Google Scholar 

  • Ehrenfreud, P. and Charnley, S.B. (2000) Organic molecules in the interstellar medium, comets, and meteorites: a voyage from dark clouds to the early Earth. Ann. Rev. Astron. Astrophys., 38, 427–483.

    Article  Google Scholar 

  • Ferrari, A.C. and Robertson, J. (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B, 61, 14095–14107.

    Article  CAS  Google Scholar 

  • Flynn, G.J. (2002) Extraterrestrial dust in the near-Earth environment. In Meteors in the Earth’s Atmosphere, E. Murad and I.P. Williams, Eds., 77–94, Cambridge University Press, Cambridge, United Kingdom.

    Google Scholar 

  • Flynn, G.J., Keller, L.P., Feser, M., Wirick, S. and Jacobsen, C. (2003) The origin of organic matter in the solar system: Evidence from the interplanetary dust particles. Geochim. Cosmochim. Acta, 67, 4791–4806.

    Article  CAS  Google Scholar 

  • Foing, B.H. and Ehrenfreud, P. (1994) Detection of two interstellar absorption bands coincident with spectral features of C60 +. Nature, 369, 296–298.

    Article  CAS  Google Scholar 

  • Foing, B.H. and Ehrenfreud, P. (1997) New evidence for interstellar C60 +. Astron. Astrophys., 317, L59–L62.

    CAS  Google Scholar 

  • Gilmour, I., Russell, S.S, Newton, J., Pillinger, C.T., Arden, J.W., Dennis, T.J., Hare, J.P., Kroto, H.W., Taylor, R. and Walton, D.R.M. (1993) A search for the presence of C60 as an interstellar grain in meteorites (abstract). Lunar Planet. Sci., 22, 445–446, Lunar and Planetary Institute, Houston, Texas, USA.

    Google Scholar 

  • Goel, A., Howard, J.B. and Vander Sande, J.B. (2004) Size analysis of single fullerene molecules by electron microscopy. Carbon, 42, 1907–1915.

    Article  CAS  Google Scholar 

  • Grieco, W.J., Howard, J.B., Rainey, L.C. and Vander Sande, J.B. (2000) Fullerenic Carbon in combustion-generated soot. Carbon, 38, 597–614.

    Article  CAS  Google Scholar 

  • Heat, J.R. (1991) Synthesis of C60 from small carbon clusters: a model based on experiment and theory. In Fullerenes, Synthesis, Properties and Chemistry of Large Carbon Clusters, G.S. Hammond and V.J. Kuck, Eds., Am. Chem. Soc. Symp. Series, 481, 1–27.

    Google Scholar 

  • Henning, T., Jäger, C. and Mutschke, H. (2004) Laboratory studies of carbonaceous dust analogs. In Astrophysics of Dust, A.N. Witt, G.C. Clayton and B.T. Draine, Eds., ASP Conf. Series, 309, 603–628, Astronomical Society of the Pacific, San Francisco, California, USA.

    Google Scholar 

  • Herbst, E. (1991) In situ formation of large molecules in dense interstellar clouds. Astrophys. J., 366, 133–140.

    Article  Google Scholar 

  • Heymann, D. (1997) Fullerenes and fulleranes in meteorites revisited. Astrophys. J., 489, L111–L114.

    Article  CAS  Google Scholar 

  • Heymann, D., Jenneskens, L.W., Jehlička, J., Koper, C. and Vlietstra, E. (2003) Terrestrial and extraterrestrial fullerenes. Fullerenes, Nanotubes, and Carbon Nanostructures, 11, 333–370.

    Article  CAS  Google Scholar 

  • Iglesias-Groth, S. (2004) Fullerenes and buckyonions in the interstellar medium., Astrophys. J., 608, L37–L40.

    Article  CAS  Google Scholar 

  • Jäger, C., Henning, Th., Schlögl, R. and Spillecke, O. (1999) Spectral properties of carbon black. J. Crystal Growth, 258, 161–179.

    Google Scholar 

  • Jelička, J., Frank, O., Pokorný, J. and Rouzaud, J.-N. (2005) Evaluation of Raman spectroscopy to detect fullerenes in geological materials. Spectrochim. Acta A 61, 2364–2367.

    Article  Google Scholar 

  • Keller, L.P., Messenger, S. and Bradley, J.P. (2000) Analysis of a deuterium-rich interplanetary dust particle and implications for presolar materials in IDPs. J. Geophys. Res. Space Phys., 105, 10397–10402.

    Article  CAS  Google Scholar 

  • Kim, Y-H., Lee, I-H., Chang, K.J. and Lee, S. (2003) Dynamics of fullerene coalescence. Phys. Rev. Lett., 90, 065501–065501.

    Article  Google Scholar 

  • Krätschmer, W., Lamb, L.D., Fostiropoulos, K. and Huffman, D. (1990) Solid C60: a new form of carbon. Nature, 347, 354–358.

    Article  Google Scholar 

  • Kroto, H.W., Heat, J.R., O’Brien, S.C., Curl, R.F. and Smalley, R.E. (1985) C60: Buckminsterfullerene. Nature, 318, 162–163.

    Article  CAS  Google Scholar 

  • Léger, A. and Puget, J.L (1984) Identification of the ’unidentified’ IR emission features of interstellar dust? Astron. Astrophys., 137, L5–L8.

    Google Scholar 

  • Luzzi D.E. and Smith B.W. (2000) Carbon cage structures in single wall carbon nanotubes: a new class of materials. Carbon, 38, 1751–1756.

    Article  CAS  Google Scholar 

  • Mennella, V., Colangeli, L., Bussoletti, E., Monaco, G., Palumbo, P. and Rotundi, A. (1995) On the electronic structure of small carbon grains of astrophysical intest. Astrophys. J. Suppl., 100, 149–157.

    Article  CAS  Google Scholar 

  • Mennella, V., Baratta, G., Colangeli, Palumbo, P., Rotundi, A. and Bussoletti, E. (1997) Ultraviolet spectral changes in amorphous carbon grains induced by ion irradiation. Astrophys. J., 481, 545–549.

    Article  CAS  Google Scholar 

  • Messenger, S. (2000) Identification of molecular-cloud material in interplanetary dust particles. Nature, 404, 968–971.

    Article  CAS  Google Scholar 

  • Mostefaoui, S., Perron, C., Zinner, E. and Sagon, G. (1999) Metal-associated carbon in primitive chondrites: structure, isotopic composition and origin. Geochim. Cosmochim. Acta, 64, 1945–1964.

    Article  Google Scholar 

  • Newton, M.D. and Stanton, R.E. (1986) Stability of buckminsterfullerene and related carbon clusters. J. Am. Chem. Soc., 108, 2469–2470.

    Article  CAS  Google Scholar 

  • Nier, A.O. and Schlutter, D.J. (1993) The thermal history of interplanetary dust particles collected in the Earth’s stratosphere. Meteoritics, 28, 675–681.

    CAS  Google Scholar 

  • Oberlin, A., Goma, J. and Rouzaud, J.N. (1984) Techniques d’étude des structures et textures (microtextures) des materiaux carbones (in French). J. Chemie Physique, 81, 701–710.

    CAS  Google Scholar 

  • Osawa, E., Hirose, Y., Kimura, A., Shibuya, M., Gu, Z. and Li, F.M. (1997a) Fullerenes in Chinese ink. A correction. Fullerene Sci. Techn., 5, 177–194.

    CAS  Google Scholar 

  • Osawa, E., Hirose, Y., Kimura, A., Shibuya, M., Kato, M. and Takezawa, H. (1997b) Seminatural occurence of fullerenes. Fullerene Sci. Techn., 5, 1045–1055.

    CAS  Google Scholar 

  • Papike, J.J., (Ed.) (1998) Planetary Materials, Revs. Mineral., 36, 1052p., The Mineralogical Society of America, Washington, D.C., USA.

    Google Scholar 

  • Papoular, R., Conard, J., Guillois, O., Nenner, I., Reynaud, C. and Rouzard, J.N. (1996) A comparison of solid-state carbonaceous models of cosmic dust. Astron. Astrophys., 315, 222–236.

    CAS  Google Scholar 

  • Pascoli, G. and Polleux, A. (2000) Condensation and growth of hydrogenated carbon clusters in carbon-rich stars. Astron. Astrophys., 359, 799–810.

    CAS  Google Scholar 

  • Pósfai, M., Anderson, J.R., Buseck, P.R. and Sievering, H. (1999) Soot and sulfate aerosol particles in the remote marine troposphere. J. Geophys. Res., 104(D17), 21685–21693.

    Article  Google Scholar 

  • Quirico, E., Raynal, P.I. and Bourot-Denise, M. (2003) Metamorphic grade of organic matter in six unequilibrated ordinary chondrites. Meteorit. Planet. Sci., 38, 795–812.

    CAS  Google Scholar 

  • Quirico, E., Borg, J., Raynal, P.I., Montagnac, G. and d’Hendecourt, L. (2005) A micro-Raman survey of 10 IDPs and 6 carbonaceous chondrites. Planet. Space Sci., in press; on line doi:10.1016/j.p.s.s.2005.07.09

    Google Scholar 

  • Ramdohr, P. (1967) Die Schmelzkrüste der Meteoriten (in German). Earth. Planet. Sci. Lett., 2, 197–209.

    Article  CAS  Google Scholar 

  • Raynal, P.I. (2003) Étude en laboratoire de matière extraterrestre: implications pour la physico-chimie du Système Solaire primitif (in French). PhD thésis, Université Paris 6, France.

    Google Scholar 

  • Reynaud, C., Guillois, O., Herlin-Boime, N., Rouzaud, J-N., Galvez, A., Clinard, C., Balanzat, E. and Ramillon, J-M (2001) Optical properties of synthetic carbon nanoparticles as model of cosmic dust. Spectrochim. Acta, A, 57, 797–814.

    Article  CAS  Google Scholar 

  • Richter, H. and Howard, J.B. (2000) Formation of polycyclic aromatic hydrocarbons and their growth to soot-a review of chemical reaction pathways. Progr. Energy Comb. Sci., 26, 565–608.

    Article  CAS  Google Scholar 

  • Rietmeijer, F.J.M. (1998) Interplanetary Dust Particles. In Planetary Materials, J.J. Papike, Ed., Revs. Mineral., 36, 2-1–2-95, The Mineralogical Society of America, Washington, D.C., USA.

    Google Scholar 

  • Rietmeijer, F.J.M. (2002) The earliest chemical dust evolution in the solar nebula. Chemie der Erde, 62, 1–45.

    Article  CAS  Google Scholar 

  • Rietmeijer, F.J.M. and Mackinnon, I.D.R. (1984) Melting, ablation and vapor phase condensation during atmospheric passage of the Bjurböle meteorite. J. Geophys. Res., 87,Suppl., B597–B604.

    Google Scholar 

  • Rietmeijer, F.J.M. and Nuth, J.A. (1991) Tridymite and maghémite formation in a Fe-SiO smoke. Proc. Lunar Planet. Sci., 21, 591–599.

    Google Scholar 

  • Rietmeijer, F.J.M., Nuth III, J.A., Karner, J.M. and Hallenbeck S.L. (2002) Gas to solid condensation in a Mg-SiO-H2-O2 vapor: Metastable eutectics in the MgO-SiO2 phase diagram. Phys. Chem. Chem. Phys., 4, 546–551.

    Article  CAS  Google Scholar 

  • Rietmeijer, F.J.M., Rotundi, A. and Heymann, D. (2004) C60 and giant fullerenes in soot condensed in vapors with variable C/H2 ratio. Fullerenes, Nanotubes, and Carbon Nanostructures, 12, 659–680.

    Article  CAS  Google Scholar 

  • Robertson, D.H., Brenner, D.W. and White, C.T. (1992) On the way to fullerenes: molecular dynamics study of the curling and closure of graphitic ribbons. J. Phys. Chem., 96, 6133–6135.

    Article  CAS  Google Scholar 

  • Rotundi, A., Rietmeijer, F.J.M., Colangeli, L., Mennella, V., Palumbo, P. and Bussoletti, E. (1998) Identification of carbon forms in soot materials of astrophysical interest. Astron. Astrophys., 329, 1087–1096.

    CAS  Google Scholar 

  • Sassara, A., Zerza, G., Chergui, M. and Leach, S. (2001) Absorption wavelengths and bandwidths for interstellar searches of C60 in the 2400—4100 Å region. Astrophys. J. Suppl., 135, 263–273.

    Article  CAS  Google Scholar 

  • Schmaltz, T.G., Seitz, W.A. and Hite, G.E. (1988) Elemental carbon cages. J. Am. Chem. Soc., 110, 1113–1127.

    Article  Google Scholar 

  • Snow, T.P. and Seab, C.G. (1989) A search for interstellar and circumstellar C60. Astron. Astrophys., 213, 291–294.

    CAS  Google Scholar 

  • Stephan, O., Bando, Y., Dussarrat, C., Kurashima, K., Sasaki, T., Tamiya, T. and Akaishi, M. (1997) Onionlike structures and small nested fullerenes formation under electron irradiation of turbostratic BC2N. Appl. Phys. Lett., 70, 2383–2385.

    Article  CAS  Google Scholar 

  • Taylor, R., Parsons, J.P., Avent, A.G., Rannard, S.P., Dennis, T.J., Hare, J.P., Kroto, H.W. and Walton, D.R.M. (1991) Degeneration of C60 by light. Nature, 351, 277.

    Article  CAS  Google Scholar 

  • Thaddeus, P. (1994) On the large organic molecules in the interstellar gas. In Molecules and Grains in Space, I. Nenner, Ed., AIP Conf. Proc., 312, 711–728, The American Institute of Physics Press, Woodbury, New York, USA.

    Google Scholar 

  • Ugarte, D. (1992) Curling and closure of graphitic networks under electron-beam irradiation. Nature, 359, 707–709.

    Article  CAS  Google Scholar 

  • von Helden, G., Gotts, N.G. and Bowers, M.T. (1993) Experimental evidence for the formation of fullerenes by collisional heating of carbon rings in the gas phase. Nature, 363, 60–63.

    Article  Google Scholar 

  • Wang, S. and, Buseck, P.R. (1991) Packing of C60 molecules and related fullerenes in crystals: a direct view. Chem. Phys. Lett., 182, 1–3.

    Article  CAS  Google Scholar 

  • Wang, Z.L. and Kang, Z.L. (1996) Pairing of pentagonal and heptagonal carbon rings in the growth of nanosize carbon spheres synthesized by a mixed-valent oxide-catalytic carbonization process. J. Phys. Chem., 100, 17725–17731.

    Article  CAS  Google Scholar 

  • Webster, A.S. (1997) The interstellar extinction curve and the absorption spectra of two fulleranes. Mon. Not. R. Astron. Soc., 288, 221–224.

    CAS  Google Scholar 

  • Weltner, W. and Van Zee, R.J. (1989) Carbon molecules, ions, and clusters. Chem. Rev., 89, 1713–1747.

    Article  CAS  Google Scholar 

  • Wopenka, B. (1988) Raman observations on individual interplanetary dust particles. Earth Planet. Sci. Lett., 88, 221–231.

    Article  CAS  Google Scholar 

  • Yeretzian, C., Hansen, K., Diederich, F. and Whetten, R.L. (1992) Coalescence reactions of fullerenes. Nature, 359, 44–47.

    Article  CAS  Google Scholar 

  • Zhao, Y., Smalley, R.E. and Yakobson, B.I. (2002a) Coalescence of fullerene cages: Topology, energetics, and molecular dynamics simulation. Phys. Rev. B, 66, 195409-1–195409-9.

    Google Scholar 

  • Zhao, Y., Yakobson, B.I. and Smalley, R.E. (2002b) Dynamic topology of fullerene coalescence. Phys. Rev. Lett., 88, 185501-1–185501-4.

    Article  Google Scholar 

  • Zinner, E., Amari, S., Wopenka, B. and Lewis, R.S. (1995) Interstellar graphite in meteorites: isotopic compositions and structural properties of single grains from Murchison. Meteoritics, 30, 209–226.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Rotundi, A., Rietmeijer, F.J.M., Borg, J. (2006). Natural C60 and Large Fullerenes: A Matter of Detection and Astrophysical Implications. In: Natural Fullerenes and Related Structures of Elemental Carbon. Developments in Fullerene Science, vol 6. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4135-7_5

Download citation

Publish with us

Policies and ethics