Skip to main content

Friction-Induced Nucleation of Nanocrystals

  • Conference paper
Nanomechanics of Materials and Structures
  • 1158 Accesses

Abstract

Experimental investigation of friction induced nucleation of nanocrystals was conducted. A series of interfacial interactions were experimentally examined, including pressing, light sliding, and heavy sliding. Results showed that only under a certain sliding conditions, nucleation of crystalline features were formed. Compressing along with heavy sliding caused either melting or severe wear. This preliminary research demonstrated the feasibility of using a friction-stimulation process combined with phase transformation to generate nanostructured materials. The possible nucleation mechanisms are frictional energy induced melting and strain-related nucleation. It leads to the future study of nucleation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Allan, “Special report-MEMS Designs Gear Up For Greater Commercialization-As new markets arise, MEMS and MST technologies move forward to overcome challenging packaging, testing, reliability, and manufacturing roadblocks,” Electronic Design, Vol. 48, No. 12, p. 85, 2000.

    Google Scholar 

  2. G.D. Hutcheson and J.D. Hutcheson, “Technology and Economics in the Semiconductor Industry,” Scientific American, Jan. 22, p.66–73, 1998.

    Google Scholar 

  3. R. Merz, F. B. Prinz, K. Ramaswami, M. Terk, and L. E. Weiss, “Shape Deposition Manufacturing,” Proc. Solid Freeform Fabrication Symposium, edited by H. Marcus, J. J. Beaman, J. W. Barlow, K. L. Bourell and R. H. Crawford, The University of Texas, Austin, August, pp. 1–8, 1994.

    Google Scholar 

  4. H. Liang and S. Jahanmir, “Boric Acid as an Additive for Core-Drilling of Alumina,” ASME Trans., J. of Tribology, 117(1), pp. 65–73, 1995.

    Google Scholar 

  5. G. Dearnaley, “Ion Implantation and Ion Beam Mixing in Corrosion Science and Technology,” Fundamental Aspects of Corrosion Protection by Surface Modification, Proc. Int. Symp. Cosp. Corr. Div. Elec. Soc. & Euro. Fed. Corro., ed. E. McCafferty, C.R. Clayton, J. Oudar, Vol. 84-3, pp. 1–14, 1984.

    Google Scholar 

  6. E. Wendler-Kalsch, “Corrosion Protection of Unalloyed and Low-Alloy Steels by Electrochemical Modification of Surface Oxide Films,” Fundamental Aspects of Corrosion Protection by Surface Modification, Proc. Int. Symp. Cosp. Corr. Div. Elec. Soc. & Euro. Fed. Corro., ed. E. McCafferty, C.R. Clayton, J. Oudar, Vol. 84-3, pp.158–172, 1984.

    Google Scholar 

  7. E. D. Nicholas, “Friction Processing Technologies,” Advanced Materials & Processes, June, pp.69–71, 1999.

    Google Scholar 

  8. H. S. Hong and M. F. Ashby, “Friction Heat Maps and Their Application,” MRS Bull. Vol.16(10), pp.41–47, 1991.

    Google Scholar 

  9. Nam P. Suh, Tribophysics, Prentice-Hall, Englewood Cliffs, NJ, pp.356–382, 1986.

    Google Scholar 

  10. F. P. Bowden and D. Tabor, The Friction and Lubrication of Solids, Clarendon Press, Oxford, pp. 33–72, 1958.

    Google Scholar 

  11. K.E. Petersen, “Silicon as a Mechanical Material,” Proc. IEEE, Vol.70, p.420–457, 1982.

    Article  Google Scholar 

  12. J.H. Wohlgemuth, “Improvements in Cast Polycrystalline Silicon PV Manufacturing Technology,” AIP Conference Proceedings, Vol. 394, p. 415, 1997.

    Article  Google Scholar 

  13. T. Ohmi, “Trends for Future Silicon Technology,” Japanese J. App. Phys. Part 1, Vol. 33, No. 12B, p. 6747, 1994.

    Article  Google Scholar 

  14. C.M.A. Ashruf, P.J. French, P.M. Sarro, P.M.M.C. Bressers, J.J. Kelly, “Electrochemical Etch Stop Engineering for Bulk Micromachining,” Mechatronics, Vol.8, p.595–612, 1998.

    Article  Google Scholar 

  15. J.M. Tour, “Conjugated Macromolecules of Precise Length and Constitution. Organic Synthesis for the Construction of Nanoarchitectures” Chem. Rev., Vol. 96, 1996, p.537–553.

    Article  Google Scholar 

  16. G.M. Whitesides, J. P. Mathias, C. T. Seto, “Molecular Self-Assembly and Nanochemistry: A Chemical Strategy for the Synthesis of Nanostructures:.Additional Info: Engineering a Small World: From Atomic Manipulation to Microfabrication,” Science, 254, 1991, p.1312–1319.

    Google Scholar 

  17. C.A. Mirkin, R. L. Letsinger, R.C. Mucic, J.J. Storhoff, “A DNA-based Method for Rationally Assembling Nanoparticles into Macroscopic Materials” Nature, 382, 1996, 607–609.

    Article  Google Scholar 

  18. A.P. Alivisatos, K. P. Johnsson, X. Peng, T.E. Wilson, C.J. Loweth, M.P. Bruchez, P.G. Schultz, “Organization of ‘nanocrystal molecules’ using DNA”Nature, 382, 609–611, 1996.

    Article  Google Scholar 

  19. N.C. Seeman, “DNA Components for Molecular Architecture,” Acc. Chem. Res., 30, 357–363, 1997.

    Article  Google Scholar 

  20. D. Bach, I.R. Miller, “Biochim. Biophys. Acta”, 114, 311–325, 1966; (b) I.R. Miller, D. Bach, Biopolymers, 6, 169–179, 1968, (c) P.L. Felgner, T.R. Gadek, M. Holm, R. Roman, H.W.Chan, M.Wenz, J.P. Northrop, G.M. Rigold, M.Danielsen, Proc. Natl. Acad. Sci. USA, 84, 7413, 1987; (d) H.J.Vollenweider, J.M.Sogo, H.H.Koller, Proc. Natl. Acad. Sci. USA, 72, 83–87, 1975.

    Google Scholar 

  21. E. Rabinowicz, “Polishing,” Sci. Am., pp.91–99, 1968.

    Google Scholar 

  22. F.P. Bowden and D. Tabor, The Friction and Lubrication of Solids, Clarendon Press, Oxford, pp.33–72, 1958.

    Google Scholar 

  23. T. Ohmi, “Trends for Future Silicon Technology,” Japanease J. Appl. Phys. Part 1, Vol. 33, No. 12B, p.6747, 1994.

    Article  Google Scholar 

  24. Preston, “The Theory and Design of Plate Glass Polishing Machines,” J. Soc. Glass Tech., 11, p.214–256, 1927.

    Google Scholar 

  25. T.E. Fischer and W.M. Mullins, “Chemical Aspects of Ceramic Tribology,” J. Phs. Chem., 96, p.5690–5695, 1992.

    Article  Google Scholar 

  26. H. Tomizawa and T.E. Fischer, ASLE Trans., 30, p.41–46, 1986.

    Google Scholar 

  27. T.E. Fischer and H. Tomizawa, “Interaction of Tribochemistry and Microfracture in the Friction and Wear of Silicon Nitride,” Wear, 105, p.21, 1985.

    Article  Google Scholar 

  28. Fischer, T.E., Liang, H. and Mullins, W.M., Tribochemical Lubricious Oxides on Silicon Nitride, New Directions in Tribology, L. Pope, L. Fehrenbacher, and W. Winer, eds., Materials Research Society Symposium Proceedings, 140, pp.339–344, 1089.

    Google Scholar 

  29. T. Fischer, Tribochemistry, Ann. Rev. Mater. Sci. 18, p.303–308, 1988.

    Article  Google Scholar 

  30. Gerhard Heinicke, Tribochemistry, Carl Hanser, Munchen, 1984.

    Google Scholar 

  31. J.T. Dickinson, N.-S. Park, M-W. Kim, and S.C. Langford, “A Scanning Force Microscope Study of a Tribochemical System: Stress-Enhanced Dissolution,” Trib. Lett. 3, pp.69–80, 1997.

    Article  Google Scholar 

  32. R. Hariadi, S. C. Langford, and J. T. Dickinson, “Controlling Nanometer-scale Crystal Growth on a Model Biomaterial with a Scanning Force Microscope”, Langmuir, 18, pp.7773–7776, 2002.

    Article  Google Scholar 

  33. C.D. Thumoond and M. Kowalchik, Bell Syst. Tech. J. 39, p.l169, 1960.

    Google Scholar 

  34. M.K. Sunkara, S. Sharma, and R. Miranda, G. Lian, and E.C. Dickey, “Bulk Synthesis of Silicon Nanowires Using a Low-temperature Vapor-Liquid-Solid Method,” App. Phys. Lett., Vol. 79, No. 10, p.1546–1548, 2001.

    Article  Google Scholar 

  35. R.S. Wagner and W.C. Ellis,. Appl. Phys Lett., 4, p.89, 1964.

    Article  Google Scholar 

  36. J. Westwater, D.P. Gosain, S. Tomiya, S. Usui, and H. Ruda, J. Vac. Sci. Technol. B, 15, p.554, 1997.

    Article  Google Scholar 

  37. A.M. Morales and C.M. Lieber, Science, 279, p.208, 1998.

    Article  Google Scholar 

  38. X. Duan and C. M. Lieber, Adv. Mater. 12, p.298, 2000.

    Article  Google Scholar 

  39. S.Q. Feng, D.P. Yu, H.Z. Zhang, Z.G. Bai, and Y. Ding, J. Cryst. Growth, 209, p.513, 2000.

    Article  Google Scholar 

  40. http://www.sunysccc.edu/academic/mst/ptable/Si.html last accessed on Apr. 26, 2003.

    Google Scholar 

  41. http://www.sunysccc.edu/academic/mst/ptable/Ga.html last accessed on Apr. 26, 2003.

    Google Scholar 

  42. J.D. Eshelby, “The Force on Elastic Singularity,” Phil. Trans. Roy. Soc. London, Ser.A, Math. Phys. Sci., vol. 244, No. 877, Nov. 6, p.87–112, 1951.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Guruzu, S., Xu, G., Liang, H. (2006). Friction-Induced Nucleation of Nanocrystals. In: Chuang, T.J., Anderson, P.M., Wu, M.K., Hsieh, S. (eds) Nanomechanics of Materials and Structures. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3951-4_5

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3951-4_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3950-8

  • Online ISBN: 978-1-4020-3951-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics