Skip to main content

An Ab-Initio Study of Mechanical Behavior for (Aℓ-O)n Nanorods

  • Conference paper
Nanomechanics of Materials and Structures

Abstract

A first principles approach based on DFT was used to study the mechanical behavior of the linear (Aℓ-O)n nanorods with n spanned 1 to 10. The minimum-energy configurations for the nanostructures are first found by fully relaxing the coordinates of the atoms. Virtual tension and compression tests were then conducted by applying a series of tensile/compressive deformations to the relaxed structures and calculating the corresponding forces required to maintain the equilibrium of the deformed nanorods. Hence, A force-strain curve is obtained for all the nanorods. The mechanical response of the two shortest nanorods is like that of the ductile aluminum, but the other longer nanorods deform like the brittle aluminum oxide. All the nanorods demonstrate a much higher compressive strength than tensile strength.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Patzke, R. G., Krumeich, F., and Nesper, R., 2002, “Oxidic Nanotubes and Nanorods — Anisotropic Modules for a Future Nanotechnology,” Angew. Chem. Int. Ed., 41(14), pp. 2446–2461.

    Article  Google Scholar 

  2. Limmer, S. J., and Cao, G., 2003, “Sol-Gel Electrophorectic Deposition for the Growth of Oxide Nanorods,” Adv. Mater. 15(5), pp. 427–431.

    Article  Google Scholar 

  3. Huynh, W. U., Dittmer, J. J., and Alivisatos, A. P., 2002, “Hybrid Nanorod-Polymer Solar Cells,” Science, 295(5564), pp. 2425–2427

    Article  Google Scholar 

  4. Tian, YT; Meng, GW; Gao, T; Sun, SH; Xie, T; Peng, XS; Ye, CH; Zhang, LD, 2004, “Alumina Nanowire Arrays Standing on a Porous Anodic Alumina Membran,” Nanotechnology 15(1), pp. 189–191.

    Article  Google Scholar 

  5. Pang, YT; Meng, GW; Zhang, LD; Shan, WJ; Zhang, C; Gao, XY; Zhao, AW; Mao, YQ, 2003, “Electrochemical Synthesis of Ordered Alumina Nanowire Arrays,” J. of Solid State Electrochem. 7(6), pp. 344–347.

    Google Scholar 

  6. Yuan, ZH; Huang, H; and Fan SS, 2202, “Regular Alumina Nanopillar Arrays,” Adv. Mater. 14(4), pp. 303–306.

    Article  Google Scholar 

  7. Xiao, ZL; Han C. Y., Welp, U., Wang, HH; Kwork K. W., Willing G. A., Hiller J. M., Cook R. E., Miller D. J., and Crabtree W. G., 2002, “Fabrication of Alumina Nanotubes and Naowires by Etching Porous Alumina Membranes,” Nano Lett. 2(11), pp. 1293–1297.

    Article  Google Scholar 

  8. Zhou, J; Deng, SZ; Chen, J; She, JC; Xu, NX, 2002, “Synthesis of Crystalline Alumina Nanowires and Nanotrees,” Chem. Phys. Lett. 365(5–6), pp. 505–508.

    Article  Google Scholar 

  9. Kresse, G., Hafner, J., 1993, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B 47(1), pp. 558–561.

    Article  Google Scholar 

  10. Kresse, G., Joubert, J., 1999, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59(3), pp. 1758–1775.

    Article  Google Scholar 

  11. Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., Fiolhais, C., 1992, “Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation,” Phys. Rev. B 46(11), pp 6671–6687.

    Article  Google Scholar 

  12. Nielsen, O. H., and Martin M. R., “Quantum-Mechanical Theory of Stress and Force,” 1985, Phys. Rev. B. 32(6), pp. 3780–3791.

    Article  Google Scholar 

  13. Kresse, G., and Furthmüller, J., 2003, VASP the Guide, http://cms.mpi.univie.ac.at/VASP/

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Song, X., Ge, Q., Yen, S.C. (2006). An Ab-Initio Study of Mechanical Behavior for (Aℓ-O)n Nanorods. In: Chuang, T.J., Anderson, P.M., Wu, M.K., Hsieh, S. (eds) Nanomechanics of Materials and Structures. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3951-4_3

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3951-4_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3950-8

  • Online ISBN: 978-1-4020-3951-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics