Skip to main content

Nano Mechanics/Materials Research

  • Conference paper
Nanomechanics of Materials and Structures
  • 1191 Accesses

Abstract

The transcendent technologies are the primary drivers of the new economy of the twenty first century and they include nanotechnology, microelectronics, information technology and biotechnology as well as the enabling and supporting mechanical and civil infrastructure systems and materials. Mechanics and materials are essential elements in all of the transcendent technologies. Nanotechnology is the creation of new materials, devices and systems at the molecular level - phenomena associated with atomic and molecular interactions strongly influence macroscopic material properties; with significantly improved mechanical, optical, chemical, electrical... properties. Research opportunities, education and challenges in mechanics and materials, including multi-scale modeling, nanomechanics, carbon nanotubes, coatings, fire-resistant materials as well as improved engineering and design of materials are presented and discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Bibliography

  1. Wong, E. (1996). An Economic Case for Basic Research. Nature 381, 187–188.

    Article  Google Scholar 

  2. Reich, S., Thomsen, C., and Maultzsch, J. (2004). Carbon Nanotubes, Wiley-VCH.

    Google Scholar 

  3. Srivastava, D., Wei, C., and Cho, K. (2003). Nanomechanics of carbon nanotubes and composites. Applied Mechanics Review, 56, 215–230.

    Article  Google Scholar 

  4. Qian, D., Wagner, G. J., Liu, W. K., Yu, M., and Ruoff, R. S. (2002). Mechanics of carbon nanotubes. Applied Mechanics Review, 55, 495–533.

    Article  Google Scholar 

  5. Chong, K. P., “Research and Challenges in Nanomechanics” 90-minute Nanotechnology Webcast, ASME, Oct. 2002; archived in www.asme.org/nanowebcast

    Google Scholar 

  6. Iijima, S. (1991). Helical microtubes of graphite carbon. Nature (London), 354 (6348), 56–58. Interagency Working Group on Nano Science, Engineering and Technology (IWGN). (2000). Nanotechnology Research Directions. Kluwer Academic Publ. 37–44.

    Article  Google Scholar 

  7. NSF. (2004). Nanoscale Science and Engineering. NSF 03-043, National Science Foundation, Arlington, VA.

    Google Scholar 

  8. Boresi, A. P., Chong, K. P. and Saigal, S. (2002). Approximate Solution Methods in Engineering Mechanics, John Wiley, New York.

    Google Scholar 

  9. NSF. (1998). Long Term Durability of Materials and Structures: Modeling and Accelerated Techniques. NSF 98-42, National Science Foundation, Arlington, VA.

    Google Scholar 

  10. Chong, K. P. (1998, 1999). Smart Structures Research in the U.S. Keynote paper, Proc. NATO Adv. Res. Workshop on Smart Structures, held in Pultusk, Poland, 6/98, Smart Structures, Kluwer Academic Publ. 37–44 (1999).

    Google Scholar 

  11. Monteiro, P. J. M., Chong, K. P., Larsen-Basse, J. and Komvopoulos, K., Eds. (2001). Long-term Durability of Structural Materials, Elsevier, Oxford, UK.

    Google Scholar 

  12. Boresi, A. P. and Chong, K. P. (2000). Elasticity in Engineering Mechanics, John Wiley, New York.

    Google Scholar 

  13. a.Asif, S. A. S., Wahl, K. J., Colton, R. J., and Warren, O. L. (2001). Quantitative Imaging of Nanoscale Mechanical Properties Using Hybrid Nanoindentation and Force Modulation. J. Appl. Phys. 90, 5838–5838.

    Article  Google Scholar 

  14. Bhushan, B., Kulkarni, A. V., Banin, W., and Wyrobek, J. T. (1996). Nanoindentation and Picoindentation Measurements Using a Capacitive Transducer System in Atomic Force Microscopy. Phil. Mag. A 74, 1117–1128.

    Google Scholar 

  15. VanLandingham, M. R., Villarrubia, J. S., Guthrie, W. F., and Meyers, G. F. (2001). Nanoindentation of Polymers: An Overview. Macromolecular Symposia 167: Advances in Scanning Probe Microscopy of Polymers, V. V. Tsukruk and N. D. Spencer, Eds., 15–44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Chong, K.P. (2006). Nano Mechanics/Materials Research. In: Chuang, T.J., Anderson, P.M., Wu, M.K., Hsieh, S. (eds) Nanomechanics of Materials and Structures. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3951-4_2

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3951-4_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3950-8

  • Online ISBN: 978-1-4020-3951-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics