Skip to main content

Mechanical Characterization of a Single Nanofiber

Experimental Techniques

  • Conference paper
Nanomechanics of Materials and Structures

Abstract

Biodegradable polymeric nanofibrous scaffolds have been used extensively for tissue engineering. The stiffness of the individual nanofibers in these scaffolds can determine not only the structural integrity of the scaffold, but also the various functions of the living cells seeded on it. Therefore, there is a need to study the nanomechanical properties of these individual nanofibers. However, mechanical testing of these fibers individually at the nanoscale can pose great challenges and difficulties. Here, we present experimental techniques to test single polymeric nanofibers - namely tensile test, three-point bend test and indentation test at the nanoscale. For demonstration of the nano tensile test, we proposed the use of a nano tensile tester to perform pull test of a single nanofiber. For three-point bend test, a nanofiber is suspended across a microsized groove etched on a silicon wafer. An AFM tip is then used to apply a point load on the mid-span of the suspended nanofiber. For nanoindentation test, a nanofiber is deposited on a mica substrate and an AFM tip is used to indent the nanofiber. Mechanical properties such as Young’s modulus, stress and strain at break of a single ultrafine fiber can then be obtained from these tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yang F, Murugan R, Ramakrishna S, Wang X, Ma YX, Wang S. “Fabrication of nanostructured porous PLLA scaffold intended for nerve tissue engineering”, Biomaterials, 25, pp. 1891–1900, 2004.

    Article  Google Scholar 

  2. Shin M, Ishii O, Sueda T, Vacanti JP. “Contractile cardiac grafts using a novel nanofibrous mesh”, Biomaterials, 25, pp. 3717–3723, 2004.

    Article  Google Scholar 

  3. Xu CY, Inai R, Kotaki M, Ramakrishna S. “Aligned biodegradable nano.brous structure: a potential scaffold for blood vessel engineering”, Biomaterials, 25, pp. 877–886, 2004.

    Article  Google Scholar 

  4. Ma PX, Langer R. “Fabrication of Biodegradable Polymer Foams for Cell Transplantation and Tissue Engineering”, Tissue Engineering Methods and Protocols, J.R. Morgan and M.L. Yarmush, Editors. Humana Press. pp. 47–56, 1999.

    Google Scholar 

  5. Ingber DE, “Mechanical and Chemical Determinants of Tissue Development, in Principles of Tissue Engineering”, R.P. Lanza, R. Langer, and J. Vacanti, Editors. Academic Press. pp. 101–110, 2000.

    Google Scholar 

  6. Opas M, “Expression of the Differentiated Phenotype by Epithelial-Cells Invitro is Regulated by Both Biochemistry and Mechanics of the Substratum”,. Developmental Biology, 131,2, pp. 281–293, 1989.

    Google Scholar 

  7. Vernon RB, Angello JC, Iruelaarispe ML, Lane TF, Sage EH. “Reorganization of Basement-Membrane Matrices by Cellular Traction Promotes the Formation of Cellular Networks Invitro”, Laboratory Investigation, 66,5, pp. 536–547, 1992.

    Google Scholar 

  8. Tan EPS, Ng SY, Lim CT. “A novel approach to tensile testing of micro-and nanoscale fibers”, Review of Scientific Instruments, 75,8, pp. 2581–2585, 2004.

    Article  Google Scholar 

  9. Tan EPS, Lim CT. “Tensile Testing of a nanofiber using an AFM Cantilever Tip”, 2004. (submitted)

    Google Scholar 

  10. Tan EPS, Ng SY, Lim CT. “Tensile Testing of a Single Ultrafine Polymeric Fiber”, Biomaterials, 2004. (in press)

    Google Scholar 

  11. Li D, Wang YL, Xia YN. “Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays”. Nano Letters, 3,8, pp. 1167–1171, 2003.

    Article  Google Scholar 

  12. Coombes AGA, Rizzi SC, Williamson M, Barralet JE, Downes S, Wallace WA. “Precipitation casting of polycaprolactone for applications in tissue engineering and drug delivery”, Biomaterials, 25, pp. 315–325, 2004.

    Article  Google Scholar 

  13. Lee KH, Kim HY, Khil MS, Ra YM, Lee DR. “Characterization of nano-structured poly(ε-caprolactone) nonwoven mats via electrospinning”, Polymer, 44, pp. 1287–1294, 2003.

    Article  Google Scholar 

  14. Sundararajan S, Bhushan B, Namazu T, Isono Y. “Mechanical property measurements of nanoscale structures using an atomic force microscope”, Ultramicroscopy, 91,1–4, pp. 111–118, 2002.

    Article  Google Scholar 

  15. Demczyk BG, Wang YM, Cumings J, Hetman M, Han W, Zettl A, Ritchie RO. “Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes”, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 334,1–2, pp. 173–178, 2002.

    Google Scholar 

  16. Kim GT, Gu G, Waizmann U, Roth S. “Simple method to prepare individual suspended nanofibers”, Applied Physics Letters, 80,10, pp. 1815–1817, 2002.

    Article  Google Scholar 

  17. Salvetat JP, Briggs GAD, Bonard JM, Bacsa RR, Kulik AJ, Stockli T, Burnham NA, Forro L. “Elastic and Shear Moduli of Single-Walled Carbon Nanotube Ropes”, Phys. Rev. Lett., 82,5, pp. 944–947, 1999.

    Article  Google Scholar 

  18. Tombler TW, Zhou C, Alexseyev L, Kong J, Dai H, Liu L, Jayanthi CS, Tang M, Wu SY. “Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation”, Nature, 405, pp. 769–772, 2000.

    Article  Google Scholar 

  19. Duvail JL, Retho P, Godon C, Marhic C, Louarn G, Chauvet O, Cuenot S, Pra NLDD, Demoustier-Champagne S. “Physical properties of conducting polymer nanofibers”, Synthetic Metals, 135,1–3, pp. 329–330, 2003.

    Article  Google Scholar 

  20. Cuenot S, Demoustier-Champagne S, Nysten B. “Elastic Modulus of Polypyrrole Nanotubes”, Physical Review Letters, 85,8, pp. 1690–1693, 2000.

    Article  Google Scholar 

  21. Xu W, Mulhern PJ, Blackford BL, Jericho MH, Templeton I. “A New Atomic Force Microscopy Technique for the Measurement of the Elastic Properties of Biological Materials”, Scanning Microscopy, 8,3, pp. 499–506, 1994.

    Google Scholar 

  22. Tan EPS and Lim CT. “Physical properties of a single polymeric nanofiber”, Applied Physics Letters, 84,9, pp. 1603–1605, 2004.

    Article  Google Scholar 

  23. Ugural AC. “Stresses in beams, in Mechanics of Materials”, McGraw-Hill, pp. 152–213, 1993.

    Google Scholar 

  24. Lu L, Mikos AG. Polymer Data Handbook, Oxford University Press, pp. 631–632, 1999.

    Google Scholar 

  25. Chizhik SA, Gorbunov VV, Luzinov I, Fuchigami N, Tsukruk VV. “Surface force spectroscopy of elastomeric nanoscale films”, Macromolecular Symposia, 167, pp.167–175, 2001.

    Article  Google Scholar 

  26. Domke J, Radmacher M. “Measuring the elastic properties of thin polymer films with the atomic force microscope”. Langmuir, 14,12, pp. 3320–3325, 1998.

    Article  Google Scholar 

  27. Johnson KL. Contact Mechanics. Cambridge University Press, pp. 397–423, 1992.

    Google Scholar 

  28. Li X, Gao H, Murphy CJ, Caswell KK. “Nanoindentation of Silver Nanowires”, Nano Letters, 3,11, pp. 1495–1498, 2003.

    Article  Google Scholar 

  29. Bischel MS, Vanlandingham MR, Eduljee RF, Gillespie JW, Schultz JM. “On the use of nanoscale indentation with the AFM in the identification of phases in blends of linear low density polyethylene and high density polyethylene”, Journal of Materials Science, 35,1, pp. 221–228, 2000.

    Article  Google Scholar 

  30. Sumomogi T, Hieda K, Endo T, Kuwahara K. “Influence of atmosphere humidity on tribological properties in scanning probe microscope observation”, Applied Physics A Materials Science & Processing, 66, pp. 299–303, 1998.

    Article  Google Scholar 

  31. Park JG, Lee SH, Kim B, Park YW. “Electrical resistivity of polypyrrole nanotube measured by conductive scanning probe microscope: The role of contact force”, Applied Physics Letters, 81,24, pp. 4625–4627, 2002.

    Article  Google Scholar 

  32. Johnson KL. Contact Mechanics, Cambridge University Press, pp. 84–106, 1992.

    Google Scholar 

  33. Garlotta D. “A Literature Review of Poly(Lactic Acid)”, Journal of Polymers and the Environment, 9,2, pp. 63–84, 2001.

    Article  Google Scholar 

  34. Greenwood JA, Tripp JH. “The elastic contact of rough spheres”, Trans. ASME, Series E, Journal of Applied Mechanics, 34,153, pp. 417–420, 1967.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Tan, E.P.S., Lim, C.T. (2006). Mechanical Characterization of a Single Nanofiber. In: Chuang, T.J., Anderson, P.M., Wu, M.K., Hsieh, S. (eds) Nanomechanics of Materials and Structures. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3951-4_12

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3951-4_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3950-8

  • Online ISBN: 978-1-4020-3951-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics