Skip to main content

Nanomechanics of Biological Single Crystals

The Role of Intracrystalline Proteins

  • Conference paper
Nanomechanics of Materials and Structures

Abstract

Examples of ceramic materials in which the organic framework is stiffened by inorganic particles, are well known in nature and are produced synthetically by man. Organisms also form a different type of composite in which the host is a inorganic single crystal and the guests are proteins deliberately occluded into the crystal. The best-studied examples, to date, are biogenic calcites, and in particular those formed by the echinoderms. In vitro experiments with calcite crystals grown in the presence of echinoderm intracrystalline proteins and mollusk shell proteins show that these macromolecules are occluded inside the crystal on specific planes that are oblique to the cleavage planes, and their presence significantly improves the mechanical properties of the crystal host. Furthermore, the proteins also influence the crystal textural properties: the coherence length is reduced in directions perpendicular to the planes on which the proteins adsorb. This textural anisotropy is generally consistent with the gross morphology of the single crystal elements, suggesting that these proteins may also function in determining the shape of the crystal during growth. These novel single crystal-protein composites may be just one example of strategies used in nature for producing materials with special properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lowenstam, H.A.; Weiner, S. On Biomineralization; Oxford University Press, New-York, 1989.

    Google Scholar 

  2. Simkiss, K.; Wilbur, K. M. Biomineralization. Cell Biology and Mineral Deposition, Academic Press: San Diego, 1989.

    Google Scholar 

  3. Wainwright, S. A.; Biggs, W. D.; Currey, J. D.; Gosline, J. M. Mechanical Design in Organisms; John Wiley & Sons: New York, 1976.

    Google Scholar 

  4. Lippmann, F. Sedimentary Carbonate Minerals; Springer-Verlag: Berlin, 1973.

    Google Scholar 

  5. Emlet, R.B. “Echinoderm calcite: A mechanical analysis of larval spicules”. Biol. Bull. 163, 264–275, 1982.

    Google Scholar 

  6. Weiner, S., Addadi, L. “Design strategies in mineralized biological materials.” J. Mater. Chem. 7, 689–702, 1997.

    Article  Google Scholar 

  7. Berman, A.; Addadi, L.; Weiner, S. “Interactions of sea urchin skeleton macromolecules with growing calcite crystals — A study of intracrystalline proteins.” Nature 331, 546–548, 1988.

    Article  Google Scholar 

  8. Addadi, L.; Weiner, S. “Control and design principles in biological mineralization”. Angew. Chem. 31, 153–169, 1992.

    Article  Google Scholar 

  9. Berman, A.; Addadi, L.; Kvick, A.; Leiserowitz, L.; Nelson, M.; Weiner, S. “Intercalation of sea urchin protein in calcite: Study of a crystalline composite material”. Science 250, 664–667, 1990.

    Google Scholar 

  10. Berman, A.; Hanson, J.; Leiserowitz, L.; Koetzle, T. F.; Weiner, S.; Addadi, L. “Biological control of crystal texture: A widespread strategy for adapting crystal properties to function”. Science 259, 776–779, 1993.

    Google Scholar 

  11. Aizenberg, J.; Hanson, J.; Koetzle, T. F.; Leiserowitz, L.; Weiner, S.; Addadi, L. “Biologically induced reduction in symmetry: A study of crystal texture of calcitic sponge spicules”. Chem. Eur. J. 7, 414–422, 1995.

    Google Scholar 

  12. Albeck, S.; Aizenberg, J.; Addadi, L.; Weiner, S. “Interactions of various skeletal intracrystalline components with calcite crystals”. J. Am. Chem. Soc. 115, 11691–11697, 1993.

    Article  Google Scholar 

  13. Aizenberg, J.; Hanson, J.; Koetzle, T. F.; Weiner, S.; Addadi, L. “Control of macromolecule distribution within synthetic and biogenic single calcite crystals”. J. Am. Chem. Soc. 119, 881–886, 1997.

    Article  Google Scholar 

  14. Donnay, G.; Pawson, D. L. “X-ray diffraction studies of echinoderm plates”. Science, 166, 1147–1149, 1969.

    Google Scholar 

  15. Aizenberg, J.; Albeck, S.; Weiner, S.; Addadi, L. “Crystal-protein interactions studied by overgrowth of calcite on biogenic skeletal elements.” J. Cryst. Growth 142, 156–164, 1994.

    Article  Google Scholar 

  16. Towe, K. M. “Echinoderm calcite: Single crystal or polycrystalline aggregate”. Science 157, 1048–1050, 1967.

    Google Scholar 

  17. Nissen, H. “Crystal orientation and plate structure in echinoid skeletal units”. Science 166, 1150–1153, 1969.

    Google Scholar 

  18. Currey, J. D. In Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends; Carter, J. G., Ed.; Van Nostrand Reinhold: New York, 1991; pp 11–26.

    Google Scholar 

  19. Addadi, L.; Weiner, S. “Interactions between acidic proteins and crystals: Stereochemical requirements in biomineralization”. Proc. Natl. Acad. Sci. (USA) 82, 4110–4114, 1985.

    Article  Google Scholar 

  20. Mann, S.; Archibald, D. D.; Didymus, J. M.; Douglas, T.; Heywood, B. R.; Meldrum, F. C.; Reeves, N. J. “Crystallization at inorganic-organic interfaces-Biominerals and biomimetic synthesis”. Science 261, 1286–1292, 1993.

    Google Scholar 

  21. Didymus, J. M.; Oliver, P.; Mann, S.; DeVries, A. L.; Hauschka, P. V.; Westbroek, P. “Influence of low-molecular-weight and macromolecular organic additives on the morphology of calcium-carbonate”. J. Chem. Soc. Faraday Trans. 89, 2891–2900, 1993.

    Article  Google Scholar 

  22. Klug, H. P.; Alexander, L. E. X-ray Diffraction Procedures; Wiley-Interscience: New York, 1974.

    Google Scholar 

  23. Addadi, L.; Aizenberg, J.; Albeck, S.; Berman, A.; Leiserowitz, L.; Weiner, S. “Controlled occlusion of proteins: A tool for modulating the properties of skeletal elements”. Mol. Cryst. Liq. Cryst. 248, 185–198, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Aizenberg, J. (2006). Nanomechanics of Biological Single Crystals. In: Chuang, T.J., Anderson, P.M., Wu, M.K., Hsieh, S. (eds) Nanomechanics of Materials and Structures. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3951-4_10

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3951-4_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3950-8

  • Online ISBN: 978-1-4020-3951-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics