Skip to main content

The Effect of Technology Scaling on Power Dissipation in Analog Circuits

  • Chapter
Analog Circuit Design

Abstract

A general approach for Power Dissipation estimates in Analog circuits as a function of Technology scaling is introduced. It is shown that as technology progresses to smaller dimensions and lower supply voltages, matching dominated circuits are expected to see a reduction in power dissipation whereas noise dominated circuits will see an increase. These finds are applied to ADC architectures like Flash and Pipeline ADC’s and it is shown why Pipeline ADC’s survive better on a high, thick-oxide supply voltage whereas Flash ADC’s benefit from the technology’s thinner oxides. As a result of these calculations an adaptation to the most popular Figure-of-Merit (FOM) for ADC’s

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Hosticka et al., “Low-Voltage CMOS Analog Circuits”, IEEE Trans. on Circ. and Syst., vol. 42, no. 11, pp. 864–872, Nov. 1995.

    Google Scholar 

  2. W. Sansen, “Challenges in Analog IC Design in Submicron CMOS Technologies”, Analog and Mixed IC Design, IEEE-CAS Region 8 Workshop, pp. 72–78, Sept. 1996.

    Google Scholar 

  3. P. Kinget and M. Steyaert, “Impact of transistor mismatch on the speed-accuracy-power trade-off of analog CMOS circuits”, Proc. IEEE Custom Integrated Circuit Conference, CICC96, pp.333–336, 1996.

    Google Scholar 

  4. M. Steyaert et al., “Custom Analog Low Power Design: The problem of low-voltage and mismatch”, Proc. IEEE Custom Int. Circ. Conf., CICC97, pp.285–292, 1997.

    Google Scholar 

  5. V. Prodanov and M. Green, “Design Techniques and Paradigms Toward Design of Low-Voltage CMOS Analog Circuits”, Proc. 1997 IEEE International Symposium on Circuits and Systems, pp. 129–132, June 1997.

    Google Scholar 

  6. W. Sansen et al., “Towards Sub 1V Analog Integrated Circuits in Submicron Standard CMOS Technologies”, IEEE Int. Solid-State Circ. Conf., Dig. Tech. Papers, pp. 186–187, Feb. 1998.

    Google Scholar 

  7. Q. Huang et al., “The Impact of Scaling Down to Deep Submicron on CMOS RF Circuits”, IEEE J. Solid-State Circuits, vol. 33, no. 7, pp. 1023–1036, July 1998.

    Google Scholar 

  8. W. Sansen, “Mixed Analog-Digital Design Challenges”, IEEE Colloq. System on a Chip, pp. 1/1–1/6, Sept. 1998.

    Google Scholar 

  9. R. Castello et al. “High-Frequency Analog Filters in Deep-Submicron CMOS Technologies”, IEEE Int. Solid-State Circ. Conf., Dig. Tech. Papers, pp.74–75, Feb. 1999.

    Google Scholar 

  10. K. Bult, “Analog Broadband Communication Circuits in Deep Sub-Micron CMOS”, IEEE Int. Solid-State Circ. Conf. Dig. Tech. Papers, pp.76–77, Feb. 1999.

    Google Scholar 

  11. J. Fattaruso, “Low-Voltage Analog CMOS Circuit Techniques”, Proc. Int. Symp. on VLSI Tech., Syst. and Appl., pp. 286–289, 1999.

    Google Scholar 

  12. D. Foty, “Taking a Deep Look at Analog CMOS”, IEEE Circuits & Devices, pp. 23–28, March 1999.

    Google Scholar 

  13. D. Buss, “Device Issues in the Integration of Analog/RF Functions in Deep Submicron Digital CMOS”, IEDM Techn. Dig., pp. 423–426, 1999.

    Google Scholar 

  14. A.J. Annema, “Analog Circuit Performance and Process Scaling”, IEEE Trans. on Circ. and Syst., vol. 46, no. 6, pp. 711–725, June 1999.

    Google Scholar 

  15. K. Bult, “Analog Design in Deep Sub-Micron CMOS”, Proc. ESSCIRC, pp. 11–17, Sept. 2000.

    Google Scholar 

  16. M. Steyaert et al., “Speed-Power-Accuracy Trade-off in high-speed Analog-to-Digital Converters: Now and in the future...”, Proc. AACD, Tegernsee, April 2000.

    Google Scholar 

  17. J. Lin and B. Haroun, “An Embedded 0.8B/480uW 6b/22MHz Flash ADC in 0.13um Digital CMOS Process using Nonlinear Double-Interpolation Technique”, IEEE Int. Solid-State Circ. Conf., Dig. Tech. Papers, pp.308–309, Feb. 2002

    Google Scholar 

  18. D. Buss, “Technology in the Internet Age”, IEEE Int. Solid-State Circ. Conf., Dig. Tech. Papers, pp.118–21, Feb. 2002

    Google Scholar 

  19. K. Uyttenhove and M. Steyaert, “Speed-Power-Accuracy Trade-off in High-Speed CMOS ADC/s”, IEEE Trans. on Circ. and Syst. II: Anal. and Dig. Sig. Proc., pp. 280–287, April 2002.

    Google Scholar 

  20. Q. Huang, “Low Voltage and Low Power Aspects of Data Converter Design”, Proc. ESSCIRC, pp. 29–35, Sept. 2004.

    Google Scholar 

  21. M. Vertregt and P. Scholtens, “Assessment of the merits of CMOS technology scaling for analog circuit design”, Proc. ESSCIRC, pp. 57–63, Sept. 2004.

    Google Scholar 

  22. A. Annema et al, “Analog Circuits in Ultra-Deep-Submicron CMOS”, IEEE J. of Solid-State Circ., vol 40, no. 1, pp. 132–143, Jan. 2005.

    Google Scholar 

  23. K. Lakshmikumar et al., “Characterization and Modelling of Mismatch in MOS Transistor for Precision Analog Design”, IEEE J. of Solid-State Circ., vol SC-21, no. 6, pp. 1057–11066, Dec. 1986

    Google Scholar 

  24. M. Pelgrom et al., “Matching Properties of MOS Transistors”, IEEE J. of Solid-State Circ., vol 24, no. 5, pp. 1433–1439, Oct. 1989.

    Google Scholar 

  25. T. Mizuno et al., “Experimental Study of Threshold Voltage Fluctuation Due to Statistical Variation of Channel Dopant Number in MOSFET's”, IEEE Trans. on Elec. Dev. vol. 41, no.11, pp. 2216–2221, Nov. 1994.

    Google Scholar 

  26. T. Ohguro et al., “0.18 Pm low voltage / low power RF CMOS with zero Vth analog MOSFET's made by undoped epitaxial channel technique”, IEEE IEDM Tech. Dig., pp.837–840, 1997.

    Google Scholar 

  27. S. Bazarjani and W.M. Snelgrove, “Low Voltage SC Circuit Design with Low-Vt MOSFET's”, IEEE Int. Symp. on Circ. and Syst., ISCAS95, pp. 1021–1024, 1995.

    Google Scholar 

  28. T. Cho and P. Gray, “A 10 b, 20 MSample/s, 35 mW Pipeline A/D Converter”,

    Google Scholar 

  29. T. Brooks et al., “A Cascaded Sigma-Delta Pipeline A/D Converter with 1.25 MHz Signal Bandwidth and 89 dB SNR”,

    Google Scholar 

  30. A. Abo and P. Gray, “A 1.5 V, 10-bit, 14.3-MS/s CMOS Pipeline Analog-to-Digital Converter”, IEEE J. of Solid-State Circ., vol 34, no. 5, pp. 599–606, May 1999.

    Google Scholar 

  31. U. Moon et al., “Switched-Capacitor Circuit Techniques in Submicron Low-Voltage CMOS”. IEEE Int. Conf. on VLSI and CAD, ICVC99, pp. 349–358, 1999.

    Google Scholar 

  32. J. Crols and M. Steyaert, “Switched-OpAmp: An Approach to Realize Full CMOS Switched-Capacitor Circuits at Very Low Power Supply Voltages”, IEEE J. of Solid-State Circ., vol 29, no. 12, pp. 936–942, Aug. 1994.

    Google Scholar 

  33. V. Peluso et al., “A 1.5-V-100-PW SD Modulator with 12-b Dynamic Range Using the Switched-OpAmp Technique”, IEEE J. of Solid-State Circ., vol 32, no. 7, pp. 943–952, July 1997.

    Google Scholar 

  34. A. Bashirotto and R. Castello, “A 1-V 1.8-MHz CMOS Switched-OpAmp SC Filter with Rail-to-Rail Output Swing”, IEEE J. of Solid-State Circ., vol 32, no. 12, pp. 1979–1986, Dec. 1997.

    Google Scholar 

  35. V. Peluso et al., “A 900-mV Low-Power SD A/D Converter with 77-dB Dynamic Range”, IEEE J. of Solid-State Circ., vol 33, no. 12, pp. 1887–1897, Dec. 1998.

    Google Scholar 

  36. L. Dai and R. Harjani, “CMOS Switched-Op-Amp-Based Sample-and-Hold Circuit”, IEEE J. of Solid-State Circ., vol 35, no. 1, pp. 109–113, Jan. 2000.

    Google Scholar 

  37. R. Hogervorst et al., “A Compact Power-Efficient 3V CMOS Rail-to-Rail Input/Output Operational Amplifier for VLSI Cell Libraries”, IEEE J. of Solid-State Circ., vol 29, no. 12, pp. 1505–1513, Dec. 1994.

    Google Scholar 

  38. W. Redman-White, “A High Bandwidth Constant gm and Slew-Rate Rail-to-Rail CMOS Input Circuit and its Application to Analog Cells for Low Voltage VLSI Systems”, IEEE J. of Solid-State Circ., vol 32, no. 5, pp. 701–711, May 1997.

    Google Scholar 

  39. B. Blalock et al., “Designing 1-V Op Amps Using Standard Digital CMOS Technology”, IEEE Trans. on Circ. and Syst., vol. 45, no. 7, pp. 769–780, July 1998.

    Google Scholar 

  40. T. Duisters and E.C. Dijkmans, “A-90-dB THD Rail-to-Rail Input Opamp Using a New Local Charge Pump in CMOS”, IEEE J. of Solid-State Circ., vol 33, no. 7, pp. 947–955, July 1998.

    Google Scholar 

  41. S. Karthikeyan et al., 'Low-Voltage Analog Circuit Design Based on Biased Inverting Opamp Configuration”, IEEE Trans. on Circ. and Syst., vol. 47, no. 3, pp. 176–184, March 2000.

    Google Scholar 

  42. K. Kattmann, J. Barrow, “A technique for reducing differential non-linearity errors in flash A/D converters”, IEEE Int. Solid-State Circ. Conf., Dig. Tech. Papers, pp. 170–171, Feb. 1991.

    Google Scholar 

  43. K. Bult and A. Buchwald, “An embedded 240-mW 10-b 50-MS/s CMOS ADC in 1 mm2”, IEEE J. of Solid-State Circ., vol 32, no. 12, pp. 1887–1895, Dec. 1990.

    Google Scholar 

  44. H. Tuinhout, “Impact of parametric mismatch and fluctuations on performance and yield of deep-submicron CMOS technologies”, in Proc. ESSDERC, pp. 95–101, 2002.

    Google Scholar 

  45. J. Dubois et al, “Impact of source/drain implants on threshold voltage matching in deep sub-micron CMOS technologies”, in Proc. ESSDERC, pp. 115–118, 2002.

    Google Scholar 

  46. R. Brederlow et al., “A mixed-Signal Design Roadmap”, ITRS 2001 in IEEE Design & Test of Computers, pp. 34–46, 2001.

    Google Scholar 

  47. ITRS 2003, http://public.itrs.net/Files/2003ITRS/Home2003.htm

  48. P. Gray and R. Meyer, “Analysis and Design of Analog Integrated Circuits”, John Wiley & Sons, Inc., New York, 1992.

    Google Scholar 

  49. K. Laker and W. Sansen, “Design of Analog Integrated Circuits and Systems”, McGraw-Hill, Inc., New York, 1994.

    Google Scholar 

  50. Y. Tsividis, “Operation and Modelling of The MOS Transistor”, McGraw-Hill Book Company, New York, 1987.

    Google Scholar 

  51. K. Bult, “CMOS Analog Square-Law Circuits”, Ph.D. Thesis, Twente University, 1988.

    Google Scholar 

  52. S. Chatterjee et al., “A 0.5V Filter with PLL-Based Tuning in 0.18um CMOS”, IEEE Int. Solid-State Circ. Conf., Dig. Tech. Papers, pp.506–507, Feb. 2005

    Google Scholar 

  53. R. van Langevelde et al., “Gate current: Modelling, DL extraction and impact on RF performance”, in IEDM Tech. Dig., pp. 289–292, 2001.

    Google Scholar 

  54. J. Mulder et al., “A 21-mW 8-b 125-MSample/s ADC in 0.09-mm2 0.13-μm CMOS”, IEEE Journal of Solid-State Circuits, vol. 39, pp. 2116–2125, Dec. 2004.

    Article  Google Scholar 

  55. H.P. Tuinhout et al., “Effects of Gate Depletion and Boron Penetration on Matching of Deep Submicron CMOS Transistors”, IEDM 97, Tech. Dig. pp. 631–635, 1997.

    Google Scholar 

  56. K. Dyer et al., “Analog background calibration of a 10b 40Msample/s parallel pipelined ADC”, IEEE Int. Solid-State Circ. Conf., Dig. Tech. Papers, pp. 142–143, Feb. 1998.

    Google Scholar 

  57. E. Siragusa and I.Galton; “A digitally enhanced 1.8-V 15-bit 40-MSample/s CMOS pipelined ADC”, IEEE J. of Solid-State Circ., pp. 2126–2138, Dec. 2004.

    Google Scholar 

  58. R. v.d.Plassche, “Integrated Analog-to-Digital and Digital-to-Analog Converters”, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994.

    Google Scholar 

  59. K.McCall et al. “A 6-bit 125 MHz CMOS A/D Converter”, Proc. IEEE Custom Int. Circ. Conf., CICC, 1992.

    Google Scholar 

  60. M.Flynn and D.Allstot, “CMOS Folding ADCs with Current-Mode Interpolation”, IEEE Int. Solid-State Circ. Conf., Dig. Tech. Papers, pp.274–275, Feb. 1995.

    Google Scholar 

  61. F.Paillardet and P.Robert, “A 3.3 V 6 bits 60 MHz CMOS Dual ADC”, IEEE Trans. on Cons. Elec., vol. 41, no. 3, pp. 880–883, Aug. 1995.

    Google Scholar 

  62. J.Spalding and D.Dalton, “A 200MSample/s 6b Flash ADC in 0.6lm CMOS”, IEEE Int. Solid-State Circ. Conf., Dig. Tech. Papers, pp.320–321, Feb. 1996.

    Google Scholar 

  63. R.Roovers and M.Steyaert, “A 175 Ms/s, 6b, 160 mW, 3.3 V CMOS A/D Converter”, IEEE J. of Solid-State Circ., vol 31, no. 7, pp. 938–944, July 1996.

    Google Scholar 

  64. S.Tsukamoto et al., “A CMOS 6-b, 200 MSample/s, 3 V-Supply A/D Converter for a PRML Read Channel LSI”, IEEE J. of Solid-State Circ., vol 31, no. 11, pp. 1831–1836, Nov. 1996.

    Google Scholar 

  65. D.Dalton et al., “A 200-MSPS 6-Bit Flash ADC in 0.6-lm CMOS”, IEEE Trans. on Circ. and Syst., vol. 45, no. 11, pp. 1433–1444, Nov. 1998.

    Google Scholar 

  66. M.Flynn and B.Sheahan, “A 400-MSample/s 6-b CMOS Folding and Interpolating ADC”, IEEE J. of Solid-State Circ., vol 33, no. 12, pp. 1932–1938, Dec. 1998.

    Google Scholar 

  67. S.Tsukamoto et al., “A CMOS 6-b, 400-MSample/s ADC with Error Correction”, IEEE J. of Solid-State Circ., vol 33, no. 12, pp. 1939–1947, Dec. 1998.

    Google Scholar 

  68. Y.Tamba and K.Yamakido, “A CMOS 6b 500MSample/s ADC for a Hard Disk Drive Read Channel”, IEEE Int. Solid-State Circ. Conf., Dig. Tech. Papers, pp.324–325, Feb. 1999.

    Google Scholar 

  69. K.Yoon et al., “A 6b 500MSample/s CMOS Flash ADC with a Background Interpolated Auto-Zero Technique”, IEEE Int. Solid-State Circ. Conf., Dig. Tech. Papers, pp.326–327, Feb. 1999.

    Google Scholar 

  70. I.Mehr and D.Dalton, “A 500-MSample/s, 6-Bit Nyquist-Rate ADC for Disk-Drive Read-Channel Applications”, IEEE J. of Solid-State Circ., vol 34, no. 7, pp. 912–920, July 1999.

    Google Scholar 

  71. K.Nagaraj et al., “Efficient 6-Bit A/D Converter Using a 1-Bit Folding Front End”, IEEE J. of Solid-State Circ., vol 34, no. 8, pp. 1056–1062, Aug. 1999.

    Google Scholar 

  72. K.Nagaraj et al., “A 700MSample/s 6b Read Channel A/D Converter with 7b Servo Mode”, IEEE Int. Solid-State Circ. Conf., Dig. Tech. Papers, pp.426–427, Feb. 2000.

    Google Scholar 

  73. K.Sushihara et al., “A 6b 800MSample/s CMOS A/D Converter”, IEEE Int. Solid-State Circ. Conf., Dig. Tech. Papers, pp.428–429, Feb. 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Bult, K. (2006). The Effect of Technology Scaling on Power Dissipation in Analog Circuits. In: Steyaert, M., Huijsing, J., van Roermund, A. (eds) Analog Circuit Design. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3885-2_13

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3885-2_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3884-6

  • Online ISBN: 978-1-4020-3885-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics