Skip to main content

Sex differences in recombination and mapping adaptations

  • Chapter
Genetics of Adaptation

Part of the book series: Georgia Genetics Review III ((GEGR,volume 3))

  • 1423 Accesses

Abstract

Since the raw material of marker based mapping is recombination, understanding how and why recombination rates evolve, and how we can use variation in these rates will ultimately help to improve map resolution. For example, using this variation could help in discriminating between linkage and pleiotropy when QTL for several traits co-locate. It might also be used to improve QTL mapping algorithms. The goals of this chapter are: (1) to highlight differences in recombination rates between the sexes, (2) describe why we might expect these differences, and (3) explore how sex difference in recombination can be used to improve resolution in QTL mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barton, N.H., 1995. A general model for the evolution of recombination. Genet. Res., 65: 123–144.

    PubMed  Google Scholar 

  • Basten, C.J., B.S. Weir & Z.-B. Zeng, 2002. QTL Cartographer. Version 1.16 edition.

    Google Scholar 

  • Bernstein, H., F. Hopf & R.E. Michod, 1988. Is meiotic recombination an adaptation for repairing DNA, producing genetic variation, or both?, Chapt. 9, pp. 139–160, In: The Evolution of Sex, edited by R.E. Michod & B.R. Levin Sinauer Associates Inc., Sunderland, MA.

    Google Scholar 

  • Borgia, G., 1979. Sexual selection and the evolution of mating systems, pp. 19–80. In: Sexual Selection and Reproductive Competition in Insects edited by M. Blum & A. Blum. Academic Press, Inc., New York.

    Google Scholar 

  • Bull, J.J., 1983. Evolution of Sex Determining Mechanisms. Menlo Park, Benjamin/Cummings California

    Google Scholar 

  • Burt, A., G. Bell, & P.H. Harvey, 1991. Sex differences in recombination. J. Evol. Biol. 4: 259–277.

    Google Scholar 

  • Callan, H.G. & P.E. Perry, 1977. Recombination in male and female meiocytes contrasted. Philos. T. Roy. Soc. Lond., B 277: 387–411.

    Google Scholar 

  • Cano, M.I. & J.L. Santos, 1990. Chiasma frequencies and distributions in gomphocerine grasshoppers: a comparative study between sexes. Heredity 64: 17–23.

    Google Scholar 

  • Chippendale, A.K., J.R. Gibson, & W. Rice, 2001. Negative genetic correlation for adult fitness between sexes reveals ontogenetic conflict in Drosophila. Proc. Natl. Acad. Sci., USA 98: 1671–1675.

    Google Scholar 

  • Coddington, J.A., 1992. Avoiding phylogenetic bias. Trends Ecol. Evol. 7: 68–69. (review of Harvey and Pagel 1991 the comparative method in evolutionary biology.)

    Google Scholar 

  • Crawford, A.M., K.G. Dodds, A.J. Ede, C.A. Pierson, G.W. Montgomery, H.G. Garmomway, A.E. Beattie, K. Davies, J.F. Maddox, S.W. Kappes, R.T. Stone, T.C. Nguyen, J.M. Penty, E.A. Lord, J.E. Broom, J. Buitkamp, W. Schwaiger, J.T. Epplen, M.E. Matthew, P. Matthews, D.J. Hulme, K.J. Beh, R.A. McGraw & C.W. Beattie, 1995. An autosomal genetic linkage map of the sheep genome. Genetics 140: 703–724.

    PubMed  Google Scholar 

  • de Vicente, M.C. & S.D. Tanksley, 1991. Genome-wide reduction in recombination of backcross progeny derived from male versus female gametes in an interspecific cross of tomato. Theor. Appl. Genet. 83: 173–178.

    Google Scholar 

  • Dib, C., S. Faure, C. Fizames, D. Samson, N. Drouot, A. Vignal, P. Millasseau, S. Marc, J. Hazan, E. Seboun, M. Lathrop, G. Gyapay, J. Morissette & J. Weissenbach, 1996. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 380(6570): 152–154.

    PubMed  Google Scholar 

  • Dietrich, W.F., J. Miller, R. Steen, M.A. Merchant, D. Damron-Boles, Z. Husain, R. Dredge, M.J. Daly, K.A. Inballs, T.J. O’Conner, C.A. Evans, M.M. DeAngelis, D.M. Levinson, L. Kruglyak, N. Goodman, N.G. Copeland, N.A. Jenkins, T.L. Hawkins, L. Stein, D.C. Page & E.S. Lander, 1996. A comprehensive geneic map of the mouse genome. Nature 380(6570): 149–152.

    PubMed  Google Scholar 

  • Groenen, M.A., H.H. Cheng, N. Bumstead, B.F. Benkel, W.E. Briles, T. Burke, D.W. Burt, L.B. Crittenden, J. Dodgson, J. Hillel, S. Lamont, A. Ponce de Leon, M. Soller, H. Takahashi & A. Vignal, 2000. A consensus linkage map of the chicken genome. Genome Res. 10:137–147.

    PubMed  Google Scholar 

  • Haldane, J.B.S., 1922. Sex ratio and unisexual sterility in hybrid animals. J. Genet. 12: 101–109.

    Google Scholar 

  • Hayman, D.L., H.D.M. Moore & E.P. Evans, 1988. Further evidence of novel sex differences in chiasma distribution in marsupials. Heredity 61: 455–458.

    Google Scholar 

  • Hayman, D.L. & J.C. Rodger, 1990. Meiosis in male Trichsurus vulpecula (Marsupialia). Heredity 64: 251–254.

    Google Scholar 

  • Jones, A.G., G. Rosenqvist, A. Berglund, S.J. Arnold & J.C. Avise, 2000. The Bateman gradient and the cause of sexual selection in a sex-role-reversed pipefish. Proc. R. Soc. Lond. B, Biol. Sci. 267: 677–680.

    Google Scholar 

  • Jones, A.G., D. Walker & J.C. Avise, 2001. Genetic evidence for extreme poyandry and extraordinary sex-role reversal in a pipefish. Proc. R. Soc. Lond., B 268: 2531–2535.

    Google Scholar 

  • Kappes, S.M., J.W. Keele, R.T. Stone, R.A. McGraw, T.S. Sonstegard, T.P.L. Smith, N.L. Lopez-Corrales & C.W. Beattie, 1997. A second-generation linkage map of the bovine genome. Genome Res. 7: 235–249.

    PubMed  Google Scholar 

  • Kearsey, M.J., L.D. Ramsay, D.E. Jennings, D.J. Lydiate, E.J.R. Bouhuon & D.F. Marshall, 1996. Higher recombination frequencies in females compared to male meioses in Brassica oleracea. Theor. Appl. Genet. 92: 363–367.

    Google Scholar 

  • Korol, A.B., I.A. Preygel & S.I. Preygel, 1994. Recombination Variability and Evolution: Algorithms of Estimation and Population-Genetic Models. Chapman and Hall, London.

    Google Scholar 

  • Lagercrantz, U. & D.J. Lydiate, 1995. RFLP mapping in Brassica nigra indicates differeing recombination rates in male and female meiosis. Genome 38: 255–264.

    Google Scholar 

  • Liu, B.H., 1998. Statistical Genomics: Linkage, Mapping, and QTL Analysis. CRC Press, Boca Raton.

    Google Scholar 

  • Marklund, L., M. Johansson Moller, B. Hoyheim, W. Davies, M. Fredholm, R.K. Juneja, P. Mariani, W. Coppieters, H. Ellegren & L. Andersson, 1996. A comprehensive linkage map of the pig based on a wild pig—Large White intercross. Anim. Genet. 27: 255–269.

    PubMed  Google Scholar 

  • Matsuda, M., S. Sotoyama, S. Hamaguchi & M. Sakaizumi, 1999. Male-specific restriction of recombination frequency in the sex chromosomes of the medaka, Oryzias latipes. Genet. Res. 73: 225–231.

    Google Scholar 

  • Neff, M.W., K.W. Broman, C.S. Mellersh, K. Ray, G.M. Acland, G.D. Aguirre, J.S. Ziegle, E.A. Ostrander & J. Rine, 1990. A second-generation genetic linkage map of the domestic dog, Canis familiaris. Genetics 151: 803–820.

    Google Scholar 

  • Nei, M., 1969. Linkage modification and sex difference in recombination. Genetics 63: 681–699.

    PubMed  Google Scholar 

  • Otto, S.P. & Y. Michalakis, 1998. The evolution of recombination in changing environments. Trends Ecol. Evol. 13: 145–151.

    Google Scholar 

  • Phillips, P.C., S.P. Otto & M.C. Whitlock, 2000. Beyond the average: the evolutionary importance of gene interactions and variability of epistatic effects, Chapter 2, pp. 20–38. In: Epistasis and the Evolutionary Process, edited by J.B. Wolf, E.D. Brodie & M.J. Wade Oxford University Press, New York, NY.

    Google Scholar 

  • Pigozzi, M. & A. Solari, 1999. Equal frequencies of recombination nodules in both sexes of the pigeon suggest a basic difference with eutherian mammals. Genome 42: 315 321.

    PubMed  Google Scholar 

  • Robertson, D.S., 1984. Different frequency in the recovery of crossover products from male and female gametes of plants hypoploid for B-A translocations in Maize. Genetics 107: 117–130.

    Google Scholar 

  • Rowe, L. & D. Houle, 1996. The lek paradox and the capture of genetic variance by condition dependent traits. Proc. R. Soc. Lond. B, Biol. Sci. 263: 1415–1421.

    Google Scholar 

  • Sakamoto, T., R.G. Danzmann, K. Gharbi, P. Howard, A. Ozaki, S. Kean Khoo, R.A. Woram, N. Okamoto, M.M. Ferguson, L.-E. Holm, R. Guyomard & B. Hoyheim, 2000. A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates. Genetics 155: 1331–1345.

    PubMed  Google Scholar 

  • Singer, A., H. Perlman, Y. Yan, C. Walker, G. Corley-Smith, B. Brandhorst & J. Postlethwait, 2002. Sex-specific recombination rates in zebrafish (Danio rerio). Genetics 160: 649–657.

    PubMed  Google Scholar 

  • Trivers, R.L., 1988. Sex differences in rates of recombination and sexual selection. pp. 270–286. in: The Evolution of Sex, edited by R.E. Michod & B.R. Levin. Sinauer Associates Inc., Sunderlan, Massachusetts.

    Google Scholar 

  • van Oorschot, R.A.H., P.A. Porter, C.M. Kammerer & J.L. VandeBerg, 1992. Severely reduced recombination in females of the South American marsupial Monodelphis domestic. Cytogenet. Cell Genet. 60: 64–67.

    PubMed  Google Scholar 

  • Watson, I.D. & H.G. Callan, 1963. The form of bivalent chromosomes in newt oocytes at first meaphase of meiosis. Q. J. Microsc. Sci. 104: 281–295.

    Google Scholar 

  • Zeng, Z.-B., 1994. Precision mapping of quantitative trait loci. Genetics 136: 1457–1466.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rodney Mauricio

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Lorch, P.D. (2005). Sex differences in recombination and mapping adaptations. In: Mauricio, R. (eds) Genetics of Adaptation. Georgia Genetics Review III, vol 3. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3836-4_5

Download citation

Publish with us

Policies and ethics