Skip to main content

Theories of adaptation: what they do and don’t say

  • Chapter
Genetics of Adaptation

Part of the book series: Georgia Genetics Review III ((GEGR,volume 3))

Abstract

Theoretical work on adaptation has lagged behind experimental. But two classes of adaptation model have been partly explored. One is phenotypic and the other DNA sequence based. I briefly consider an example of each — Fisher’s geometric model and Gillespie’s mutational landscape model, respectively — reviewing recent results. Despite their fundamental differences, these models give rise to several strikingly similar results. I consider possible reasons for this congruence. I also emphasize what predictions do and, as important, do not follow from these models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barton, N., 1998. The geometry of natural selection. Nature 395: 751–752.

    PubMed  Google Scholar 

  • Barton, N.H., 2001. The role of hybridization in evolution. Mol. Ecol. 10: 551–568.

    PubMed  Google Scholar 

  • Barton, N.H. & P.D. Keightley, 2002. Understanding quantitative genetic variation. Nature Rev. Genet. 3: 11–21.

    Google Scholar 

  • Bradshaw, H.D., K.G. Otto, B.E. Frewen, J.K. McKay & D.W. Schemske, 1998. Quantitative trait loci affecting differences in floral morphology between two species of Monkeyflower (Mimulus). Genetics 149: 367–382.

    PubMed  Google Scholar 

  • Bull, J.J., M.R. Badgett, H.A. Wichman, J.P. Huelsenbeck, D.M. Hillis, A. Gulati, C. Ho & I.J. Molineux, 1997. Exceptional convergent evolution in a virus. Genetics 147: 1497–1507.

    PubMed  Google Scholar 

  • Fisher, R.A., 1930. The Genetical Theory of Natural Selection. Oxford University Press, Oxford.

    Google Scholar 

  • Fisher, R.A., 2000. The Genetical Theory of Natural Selection: a Complete Variorum Edition. Oxford University Press, Oxford.

    Google Scholar 

  • Gerrish, P., 2001. The rhythm of microbial adaptation. Nature 413: 299–302.

    PubMed  Google Scholar 

  • Gerrish, P.J. & R.E. Lenski, 1998. The fate of competing beneficial mutations in an asexual population. Genetica 102/103: 127–144.

    Google Scholar 

  • Gillespie, J., 1984. Molecular evolution over the mutational landscape. Evolution 38: 1116–1129.

    Google Scholar 

  • Gillespie, J.H., 1991. The Causes of Molecular Evolution. Oxford University Press, Oxford.

    Google Scholar 

  • Gillespie, J.H., 2002. Why k = 4Nus is silly in Evolutionary Genetics, edited by R.S. Singh. Vol. III.

    Google Scholar 

  • Gumbel, E.J., 1958. Statistics of Extremes. Columbia University Press, New York.

    Google Scholar 

  • Hartl, D. & C.H. Taubes, 1998. Compensatory nearly neutral mutations: selection without adaptation. J. Theor. Biol. 182: 303–309.

    Google Scholar 

  • Kauffman, S.A., 1993. The Origins of Order. Oxford University Press, New York.

    Google Scholar 

  • Kimura, M., 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Leadbetter, M.R., G. Lindgren & H. Rootzen, 1980. Extremes and Related Properties of Random Sequences and Processes. Springer-Verlag, New York.

    Google Scholar 

  • Long, A.D., R.F. Lyman, A.H. Morgan, C.H. Langley & T.F. Mackay, 2000. Both naturally occurring insertions of transposable elements and intermediate frequency polymorphisms at the achaete-scute complex are associated with variation in bristle number in Drosophila melanogaster. Genetics 154: 1255–1269.

    PubMed  Google Scholar 

  • Maynard Smith, J., 1962. The limitations of molecular evolution, pp. 252–256 in The Scientist Speculates: an Anthology of Partly-baked Ideas, edited by I.J. Good. Basic Books, Inc., New York.

    Google Scholar 

  • Maynard Smith, J., 1970. Natural selection and the concept of a protein space. Nature 225: 563–564.

    PubMed  Google Scholar 

  • Orr, H.A., 1998a. The population genetics of adaptation: the distribution of factors fixed during adaptive evolution. Evolution 52: 935–949.

    Google Scholar 

  • Orr, H.A., 1998b. Testing natural selection versus genetic drift in phenotypic evolution using quantitative trait locus data. Genetics 149: 2099–2104.

    PubMed  Google Scholar 

  • Orr, H.A., 1999. The evolutionary genetics of adaptation: a simulation study. Genet. Res. 74: 207–214.

    PubMed  Google Scholar 

  • Orr, H.A., 2000. Adaptation and the cost of complexity. Evolution 54: 13–20.

    PubMed  Google Scholar 

  • Orr, H.A., 2001. The ‘sizes’ of mutations fixed in phenotypic evolution: a response to Clarke and Arthur. Evol. Dev. 3: 121 123.

    PubMed  Google Scholar 

  • Orr, H.A., 2002. The population genetics of adaptation: the adaptation of DNA sequences. Evolution 56: 1317–1330.

    PubMed  Google Scholar 

  • Orr, H.A., 2003a. The distribution of fitness effects among beneficial mutations. Genetics 163: 1519–1526.

    PubMed  Google Scholar 

  • Orr, H.A., 2003b. A minimum on the mean number of steps taken in adaptive walks. J. Theor. Biol. 220: 241–247.

    PubMed  MathSciNet  Google Scholar 

  • Poon, A. & S.P. Otto, 2000. Compensating for our load of mutations: freezing the meltdown of small populations. Evolution 54: 1467–1479.

    PubMed  Google Scholar 

  • Smith, N.G.C. & A. Eyre-Walker, 2002. Adaptive protein evolution in Drosophila. Nature 415: 1022–1024.

    PubMed  Google Scholar 

  • Welch, J.J. & D. Waxman, 2003. Modularity and the cost of complexity. Evolution 57: 1723–1734.

    PubMed  Google Scholar 

  • Wichman, H.A., M.R. Badgett, L.A. Scott, C.M. Boulianne & J.J. Bull, 1999. Different trajectories of parallel evolution during viral adaptation. Science 285: 422–424.

    PubMed  Google Scholar 

  • Zeng, Z.-B., J. Liu, L.F. Stam, C.-H. Kao, J.M. Mercer & C.C. Laurie, 2000. Genetic architecture of a morphological shape difference between two Drosophila species. Genetics 154: 299–310.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rodney Mauricio

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Orr, H.A. (2005). Theories of adaptation: what they do and don’t say. In: Mauricio, R. (eds) Genetics of Adaptation. Georgia Genetics Review III, vol 3. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3836-4_2

Download citation

Publish with us

Policies and ethics