Skip to main content

Abstract

Dark green islands (DGIs) have been an enigma since they were first documented before the nature of viruses was known (reviewed in Allard, 1914). In 1898 Beijerinck identified the casual agent of tobacco mosaic disease as a contagious solution a “contagium vivum fluidum” and described dark green blotches on the upper leaves of infected plants (Goldstein, 1926). When a mosaic virus infects a plant, these discrete regions of dark green tissue occur only on leaves that are systemically infected when immature. Leaves that are fully developed at the time of infection do not develop DGIs. A variety of tools and plant-virus models have been used in the years since Beijerinck’s report to compare the dark green tissue with the surrounding yellow tissue. These experiments and observations have been aimed at determining the nature and causes of DGIs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allard, H. A. 1914. The mosaic disease of tobacco. U. S. Dept. Agr. Bull. 40: 1–33.

    Google Scholar 

  • Atkinson, P.H. and Matthews, R.E.F. 1970. On the origin of dark green tissue in tobacco leaves infected with tobacco mosaic virus. Virology 40: 344–56.

    Article  PubMed  CAS  Google Scholar 

  • Banerjee, N. and Zaitlin, M. 1992. Import of tobacco mosaic virus coat protein into intact chloroplasts in vitro. Molec. Plant-Microbe Interact. 5: 466–471.

    CAS  Google Scholar 

  • Bedbrook, J. R. and Matthews R.E.F. 1972. Changes in the proportions of early products of photosynthetic carbon fixation induced by TYMV infection. Virology 48: 255–8.

    Article  PubMed  CAS  Google Scholar 

  • Bedbrook, J. R. and Matthews, R.E.F. 1973. Changes in the flow of early products of photosynthetic carbon fixation associated with the replication of TYMV. Virology 53: 84–91.

    Article  PubMed  CAS  Google Scholar 

  • Bedbrook, J., Douglas, J. and Matthews, R.E.F. 1974. Evidence for TYMV-induced RNA and DNA synthesis in the nuclear fraction from infected Chinese cabbage leaves. Virology 58: 334–44.

    Article  PubMed  CAS  Google Scholar 

  • Beijerinck, M.W. 1898. Ueber ein contagium vivum fluidum als Ursache der Fleckenkrankheit der Tabaksblätter. Verh. Kon. Akad. Wetensch. 65, 3–21. [English translation (1942): Concerning a contagium vivum fluidum as cause of the spot disease of tobacco leaves. Phytopathol. Classics 7, 33–52].

    Google Scholar 

  • Bowman, J.L. 2004. Class III HD-Zip gene regulation, the golden fleece of ARGONAUTE activity? Bioessays 26: 938–942.

    Article  PubMed  CAS  Google Scholar 

  • Clover, G.R.G., Azam-Ali, S.N., Jaggard, K.W. and Smith, H.G. 1999. The effects of beet yellows virus on the growth and physiology of sugar beet (Beta vulgaris). Plant Pathol. 48: 129–138.

    Article  Google Scholar 

  • Ding, S.-W., Li, H., Lu, R. and Li, W.-X. 2004. RNA silencing: a conserved antiviral immunity of plants and animals. Virus Res. 102: 109–115.

    Article  PubMed  CAS  Google Scholar 

  • Eagles, R.M. 1994. Tamarillo mosaic potyvirus: Characterisation and resistance. Doctoral Thesis. University of Auckland, Auckland.

    Google Scholar 

  • Ferguson, A. and Matthews, R.E.F. 1993. Mosaic disease induced by turnip yellow mosaic tymovirus. Biochimie 75: 555–9.

    Article  PubMed  CAS  Google Scholar 

  • Foster, T.M., Lough, T.J., Emerson, S.J., Lee, R.H., Bowman, J.L., Forster, R.L.S. and Lucas W.J. 2002 A surveillance system regulates selective entry of RNA into the shoot apex. Plant Cell 14: 1497–1508.

    Article  PubMed  CAS  Google Scholar 

  • Fulton, R.W. 1951. Superinfection by strains of tobacco mosaic virus. Phytopathology 41: 579–592.

    Google Scholar 

  • Gera, A. and Loebenstein, G. 1988. An inhibitor of virus replication associated with green island tissue of tobacco infected with cucumber mosaic virus. Physiol Molec. Plant Pathol. 32: 373–385.

    Article  Google Scholar 

  • Goldstein, B. 1926. A cytological study of the leaves and growing points of healthy and mosaic diseased tobacco plants. Bull. Torrey Bot. Club 53: 499–599.

    Article  Google Scholar 

  • Hamilton, A., Voinnet, O., Chappell, L. and Baulcombe, D. 2002. Two classes of short interfering RNA in RNA silencing. EMBO J. 21: 4671–9.

    Article  PubMed  CAS  Google Scholar 

  • Herbers, K., Takahata, Y., Melzer, M., Mock, H.P., Hajirezaei, M. and Sonnewald, U. 2000. Regulation of carbohydrate partitioning during the interaction of potato virus Y with tobacco. Mol. Plant Pathol. 1: 51–59.

    Article  CAS  Google Scholar 

  • Himber, C., Dunoyer, P., Moissiard, G., Ritzenthaler, C. and Voinnet, O. 2003. Transitivity-dependent and-independent cell-to-cell movement of RNA silencing. EMBO J. 22: 4523–4533.

    Article  PubMed  CAS  Google Scholar 

  • Hodgson, R.A., Beachy, R.N. and Pakrasi, H.B. 1989. Selective inhibition of photosystem II in spinach by tobacco mosaic virus: an effect of the viral coat protein. FEBS Lett 245: 267–70.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, F.O. 1928. Accuracy in quantitative work with tobacco mosaic virus. Bot. Gazette 86: 66–81.

    Article  Google Scholar 

  • Hull, R. 2002. Matthews’ Plant Virology 4th Edition. London: Academic Press.

    Google Scholar 

  • Iwanowski, D. 1903. Uber die Mosaikkrankheit der Tabakspflanzen. Zeitsch. Pflanzenkr. 13: 1–41.

    Google Scholar 

  • Johnson, J. 1922. The relation of air temperature to the mosaic disease of potatoes and other plants. Phytopathology 12: 438–440.

    Google Scholar 

  • Klahre, U., Crete, P., Leuenberger, S.A., Iglesias, V.A. and Meins, F. 2002. High molecular weight RNAs and small interfering RNAs induce systemic posttranscriptional gene silencing in plants. Proc. Natl. Acad. Sci. USA 99: 11981–11986.

    Article  PubMed  CAS  Google Scholar 

  • Llave, C., Kasschau, K.D. and Carrington, J.C. 2000. Virus-encoded suppressor of posttranscriptional gene silencing targets maintenance step in the silencing pathway. Proc. Natl. Acad. Sci. USA 97: 13401–13406.

    Article  PubMed  CAS  Google Scholar 

  • Llave, C., Kasschau, K.D., Rector, M.A., Carrington, J.C. 2002. Endogenous and silencing-associated small RNAs in plants. Plant Cell. 14: 1605–19.

    Article  PubMed  CAS  Google Scholar 

  • Lee, L., Palukaitis, P. and Gray, S.M. 2002. Host-dependent requirement for the Potato leafroll virus 17-kda protein in virus movement. Mol Plant-Microbe Interact. 10: 1086–1094.

    Article  Google Scholar 

  • Lindbo, J.A. and Dougherty, W.G. 1992. Untranslatable transcripts of the tobacco etch virus coat protein gene sequence can interfere with tobacco etch virus replication in transgenic plants and protoplasts. Virology 189: 725–733.

    Article  PubMed  CAS  Google Scholar 

  • Liu, J., Carmell, M.A., Rivas, F.V., Marsden, C.G., Thomson, J.M., Song, J.J., Hammond, S.M., Joshua-Tor, L. and Hannon, G.J. 2004. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305: 1437–1441.

    Article  PubMed  CAS  Google Scholar 

  • Loebenstein, G., Cohen, J., Shabtai, S., Coutts, R.H.A. and Wood, K.R. 1977 Distribution of Cucumber mosaic virus in systemically infected tobacco leaves. Virology 81: 117–125.

    Article  PubMed  CAS  Google Scholar 

  • Mallory, A.C., Ely, L., Smith, T.H., Marathe, R., Anandalakshmi, R., Fagard, M., Vaucheret, H., Pruss, G., Bowman, L. and Vance, V.B. 2001. HC-Pro suppression of transgene silencing eliminates the small RNAs but not the transgene methylation or the mobile signal. Plant Cell 13: 571–583.

    Article  PubMed  CAS  Google Scholar 

  • Mallory, A.C., Mlotshwa, S., Bowman, L.H. and Vance, V.B. 2003. The capacity of transgenic tobacco to send a systemic RNA silencing signal depends on the nature of the inducing transgene locus. Plant J. 35: 82–92.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, R.E.F. 1991 Plant Virology, third edition. Academic Press, San Diego.

    Google Scholar 

  • Maule, A., Leh, V. and Lederer, C. 2002. The dialogue between viruses and hosts in compatible interactions. Curr. Opinion Plant Biol. 5: 1–6.

    Article  Google Scholar 

  • Mlotshwa, S., Voinnet, O., Mette, M.F., Matzke, M., Vaucheret, H., Ding, S.W., Pruss, G. and Vance, V.B. 2002. RNA silencing and the mobile silencing signal. Plant Cell 14: S289–S301.

    Article  PubMed  CAS  Google Scholar 

  • Moore, C.J., Sutherland, P.W., Forster, R.L.S., Gardner, R.C. and MacDiarmid, R.M. 2001. Dark green islands in plant virus infection are the result of posttranscriptional gene silencing. Mol. Plant-Microbe Interact. 14: 939–946.

    Article  PubMed  CAS  Google Scholar 

  • Moore, C.J. 2003. Dark green islands and gene silencing. Doctoral Thesis. University of Auckland, Auckland.

    Google Scholar 

  • Ratcliff, F., Harrison, B.D. and Baulcombe, D.C. 1997. A similarity between viral defense and gene silencing in plants. Science 276: 5318–1558.

    Article  Google Scholar 

  • Reid, M.S. and Matthews, R.E.F. 1966. On the origin of the mosaic induced by turnip yellow mosaic virus. Virology 28: 563–570.

    Article  PubMed  CAS  Google Scholar 

  • Roth, B.M., Pruss, G.J. and Vance, V.B. 2004. Plant vial suppressors of RNA silencing. Virus Res. 102: 97–108.

    Article  PubMed  CAS  Google Scholar 

  • Ryabov, E.V., van Wezel, R., Walsh, J. and Hong, Y. 2004. Cell-to-cell, but not long-distance, spread of RNA silencing that is induced in individual epidermal cells. J. Virol. 78: 3149–3154.

    Article  PubMed  CAS  Google Scholar 

  • Salaman, R.N. 1933. Protective inoculation against a plant virus. Nature 131: 468.

    Google Scholar 

  • Shalitin, D. and Wolf, S. 2000. Cucumber mosaic virus infection affects sugar transport in melon plants. Plant Physiol. 123: 597–604.

    Article  PubMed  CAS  Google Scholar 

  • Schiebel, W., Pelissier, T., Riedel, L., Thalmeir, S., Schiebel, R., Kempe, D., Lottspeich, F., Sanger, H.L. and Wassenegger, M. 1998. Isolation of an RNA-directed RNA polymerase-specific cDNA clone from tomato. Plant Cell 10: 2087–2101.

    Article  PubMed  CAS  Google Scholar 

  • Schoelz, J.E. and Zaitlin, M. 1989. Tobacco mosaic virus RNA enters chloroplasts in vivo. Proc. Natl. Acad. Sci. USA 86: 4496–4500.

    Article  PubMed  CAS  Google Scholar 

  • Solberg, R.A. and Bald, J.G. 1962. Viral invasion and multiplication during leaf histogenesis. Virology 17: 359–361.

    Article  PubMed  CAS  Google Scholar 

  • Song, J.J., Smith, S.K., Hannon, G.J, and Joshua-Tor, L. 2004. Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305: 1434–1437.

    Article  PubMed  CAS  Google Scholar 

  • Ushiyama, R. and Matthews, R.E.F. 1970. The significance of chloroplast abnormalities associated with infection by turnip yellow mosaic virus. Virology 42: 293–303.

    Article  PubMed  CAS  Google Scholar 

  • Vance, V.B. and Vaucheret, B. 2001. RNA silencing in plants — Defense and counterdefense. Science 292: 2277–2280.

    Article  PubMed  CAS  Google Scholar 

  • Xie, Z., Fan, B., Chen, C. and Chen, Z. 2001. An important role of an inducible RNA-dependent RNA polymerase in plant antiviral defense. Proc. Natl. Acad. Sci. USA 98: 6516–6521.

    Article  PubMed  CAS  Google Scholar 

  • Xie, Z., Johansen, L.K., Gustafson, A.M., Kasschau, K.D., Lellis, A.D., Zilberman, D., Jacobsen, S.E. and Carrington, J.C. 2004. Genetic and functional diversification of small RNA pathways in plants. Public Library of Science (PloS) Biol. 2: E104.

    Google Scholar 

  • Yelina, N.E., Savenkov, E.I., Solovyev, A.G., Morozov, S.Y. and Valkonen, J.P.T. 2002. Long-distance movement, virulence, and RNA silencing suppression controlled by a single protein in Hordei-and Poytviruses: Complementary functions between virus families. J. Virology 76: 12981–12991.

    Article  PubMed  CAS  Google Scholar 

  • Yoo, B.-C., Kragler, F., Varkonyi-Gasic, E., Haywood, V., Archer-Evans, S., Lee, Y.M., Lough, T.J. and Lucas, W.J. 2004. A systemic small RNA signalling system in plants. Plant Cell 16: 1979–2000.

    Article  PubMed  CAS  Google Scholar 

  • Yu, D., Fan, B., MacFarlane, S.A. and Chen, Z. 2003. Analysis of the involvement of an inducible Arabidopsis RNA-dependent RNA polymerase in antiviral defense. Mol. Plant-Microbe Interact. 16: 206–216.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Moore, C.J., MacDiarmid, R.M. (2006). Dark Greens Islands: the Phenomenon. In: Loebenstein, G., Carr, J.P. (eds) Natural Resistance Mechanisms of Plants to Viruses. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3780-5_9

Download citation

Publish with us

Policies and ethics