Skip to main content

Reducing Virus Associated Crop Loss Through Resistance to Insect Vectors

  • Chapter
Natural Resistance Mechanisms of Plants to Viruses

Abstract

The development of sustainable, environmentally-benign methods of crop protection is an important priority in agricultural research. A variety of insects attack crops, causing damage and reducing yields and crop quality. Insects cause crop loss directly through feeding on leaves, flowers, fruit or seed. A subset of insects damages crops indirectly, through transmission of plant viruses, resulting in reduced yield and crop quality. Breeding for disease resistance has been an important strategy for protection of crops against fungal, bacterial or viral diseases; however, resistances have not yet been identified or transferred for many major diseases. Although integrated pest management (IPM) strategies have been implemented with noted success, insect control has more often relied on the use of pesticides, leading to the evolution of pesticide-resistant insects and to increasing health and environmental concerns. The development of pest resistant plants is an attractive alternative strategy for the control of insects and the direct damage they cause. For a target pest that is also the vector of a plant pathogenic virus, the question arises as to whether an effective insect resistance could also serve as a component in an integrated control strategy for insect vectored viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ammar, E.D., Jarlfors, U. and Pirone, T.P. 1994. Association of potyvirus helper component protein with virions and the cuticle lining the maxillary food canal and foregut of an aphid vector. Phytopathology 84: 1054–1060.

    Article  Google Scholar 

  • Atzmon, G., van Hoss, H. and Czosnek, H. 1998. PCR-amplification of Tomato yellow leaf curl virus (TYLCV) from squashes of plants and insect vectors: Application to the study of TYLCV acquisition and transmission. Eur. J. Plant Pathol. 104: 189–194.

    Article  CAS  Google Scholar 

  • Backus, E.A. 1985. Anatomical and sensory mechanisms of planthopper and leafhopper feeding behavior. In The leafhoppers and planthoppers. L.R. Nault and J.G. Rodriguez, eds. Wiley and Sons, Inc., New York.

    Google Scholar 

  • Beck, S.D. 1965. Resistance of plants to insects. Annu. Rev. Entomol 10 207–232.

    Article  Google Scholar 

  • Burgess, E.P.J., Malone, L.A., Christeller, J.T., Lester, M.T. and Murray C. 2002. Avidin expressed in transgenic tobacco leaves confers resistance to two noctuid pests, Helicoverpa armigera and Spodoptera litura. Transgenic Res. 11: 185–98.

    Article  PubMed  CAS  Google Scholar 

  • Burke, B, Goldsby G. and Mudd, J.B. 1987. Polar epicuticular lipids of Lycopersicon pennellii. Phytochemistry. 26: 2567–2571.

    Article  CAS  Google Scholar 

  • Buta, G.J., Lusby, W.R., Neal, J.W., Waters R.M. and Pittarelli G.W. 1993. Sucrose esters from Nicotiana gossei active against the greenhouse whitefly Trialeuroides vaporarium. Phytochemistry 32: 859–864.

    Article  CAS  Google Scholar 

  • Cao, J., Ibrahim, H., Garcia, J.J., Mason, H., Granados, R.R. and Earle, E.D. 2002. Transgenic tobacco plants carrying a baculovirus enhancin gene slow the development and increase the mortality of Trichoplusia ni larvae. Plant Cell Reprod. 21: 244–50.

    Article  CAS  Google Scholar 

  • Ceci, L.R., Volpicella, M., Rahbe, Y., Gallerani, R., Beekwilder, J. and Jongsma, M.A. 2003 Selection by phage display of a variant mustard trypsin inhibitor toxic against aphids. Plant J. 33: 557–566.

    Article  PubMed  CAS  Google Scholar 

  • Clark, R. A. 1995. Environmental assessment of curly top virus control in California: 1991–1995. Cal. Dept. Food and Agr. Sacramento, CA.

    Google Scholar 

  • Cook, W. C. 1933. Spraying for control of the beet leafhopper in central California in 1931. Calif. Dept. Agric. Monthly Bull. 22: 138–141.

    Google Scholar 

  • Cook, W. C. 1943. Evaluation of a field-control program directed against the beet leafhopper. J. Econ. Entomol. 36: 382–385.

    Google Scholar 

  • Cutler, H.G., Severson, R.F., Cole, P.D., Jackson D.M. and Johnson, A.W. 1986. Secondary metabolites from plants. Their possible role as biological control agents. pp 178–196. In: Natural Resistance of Plants to Pests. Roles of Allelochemicals. (Eds.: M. B. Green and P.A. Hedin). ACS Symposium Series 296. American Chemical Society, Washington, DC.

    Google Scholar 

  • Czosnek, H., Morin, S., Rubinstein, G., Fridman, V., Zeidan, M. and Ghanim, M. 2001. Tomato yellow leaf curl virus: A disease sexually transmitted by whiteflies. In: Virus-Insect-Plant Interactions. K.F. Harris, O.P. Smith and J.E. Duffus, Eds., Academic Press, San Diego, CA. 1–27.

    Google Scholar 

  • DaCosta, C.P. and. Jones, C.M 1971. Cucumber beetle resistance and mite susceptibility controlled by the bitter gene in Cucumis sativus L. Science 172: 1145–1146.

    Article  Google Scholar 

  • Duffus, J.E. 1987. Whitefly transmission of plant viruses. In Current Topics in Vector Research. Harris, K.F. ed. Springer-Verlag, New York.

    Google Scholar 

  • Everson, E.H. and Gallun, R. L., 1980. Breeding approaches in wheat. Breeding Plants Resistant to Insects. F. G. Maxwell and P. R. Jennings eds, pp 513–534

    Google Scholar 

  • Farrar, R.R. and Kennedy, G.G. 1991. Inhibition of Telenomus-sphingis an egg parasitoid of Manduca spp by trichome 2-tridecanone-based host plant-resistance in tomato Entom. Exp. Applic. 60: 157–166.

    Article  CAS  Google Scholar 

  • Ferry N., Edwards, M.G., Gatehouse, J.A. and Gatehouse, A.M.R. 2004. Plant-insect interactions: molecular approaches to insect resistance. Current Opinion in Biotechnology 13: 155–161.

    Article  CAS  Google Scholar 

  • Fery, R.L. and Kennedy, G.G. 1987. Genetic analysis of 2-tridecanone concentration, leaf trichome characteristics and tobacco hornworm. resistance in tomato. J Amer Soc Hort Sci 112: 886–891.

    CAS  Google Scholar 

  • Fobes, J.F., Mudd, J. and Marsden, M. 1985. Epicuticular lipid on the leaves of L. pennellii and L. esculentum. Plant Physiol. 77: 567–570.

    Article  PubMed  CAS  Google Scholar 

  • Gasser, C.S. and Fraley R.T. 1989. Genetically engineered plants in crop improvement. Science 244: 1293–1299.

    Article  CAS  PubMed  Google Scholar 

  • Gibson, R.W. and Valencia, L. 1978. A survey of potato species for resistance to the mite Polyphagotarsonemus latus, with particular reference to the protection of Solanum berthaultii and S. tarijense by glandular hairs. Potato Res. 21: 217–223.

    Article  Google Scholar 

  • Gibson, R.W. 1976. Trapping of the spider mite Tetranychus urticae by glandular hairs on the wild potato Solanum berthaultii. Potato Res. 19: 179–182.

    Article  Google Scholar 

  • Gill, S.S., E.A. Cowles, and Pietrantonio, F.V. 1992. The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol.. 37: 615–636.

    Article  PubMed  CAS  Google Scholar 

  • Goffreda, J., Mutschler, M.A. and Tingey W.M. 1988. Feeding behavior of potato aphid affected by glandular trichomes of wild tomato. Entomol. Exp. Appl. 48: 101–107.

    Article  Google Scholar 

  • Goffreda, J.C., Mutschler, M.A., Ave, D.A., Tingey, W.M. and Steffens, J.C. 1989. Aphid deterrence by glucose esters in glandular trichome exudate of wild tomato Lycopersicon pennellii. J Chem. Ecol. 15: 2135–2147.

    Article  CAS  Google Scholar 

  • Gonçalves, M.I.F., Maluf, W.R., Gomes, L.A.A. and Barbosa, L.V. 1998. Variation of 2-tridecanone level in tomato plant leaflets and resistance to two mite species (Tetranychus sp.). Euphytica 104: 33–38.

    Article  Google Scholar 

  • Granett, J, Walker M. A. and Kocsis L. 2001. Biology and management of grape phylloxera. Annu. Rev. Entomol. 46: 387–412.

    Article  PubMed  CAS  Google Scholar 

  • Gray, S.M. and Banerjee, N. 1999. Mechanisms of arthropod transmission of plant and animal viruses. Microb. Molec. Biol. Rev. March 1999: 128–148.

    Google Scholar 

  • Hadacek, F. 2002. Secondary metabolites as plant traits: current assessment and future perspectices CRC Crit Rev. Plant Sci. 21: 273–322.

    CAS  Google Scholar 

  • Hawthorne, D.M, Shapiro, J.A., Tingey, W.M. and Mutschler, M.A. 1992. Trichome-borne and artificially applied acylsugars of wild tomato deter feeding and oviposition of the leafminer, Liriomyza trifolii. Entomol. Exp. Appl. 65: 65–73.

    Article  CAS  Google Scholar 

  • Holley, J.D., King R.R. and Singh R.P. 1987. Glandular trichomes and the resistance of Solanum berthaultii (PI 473340) to infection from Phytophthora infestans. Can. J. Plant Pathol. 9: 291–294.

    Google Scholar 

  • Hunter, W.G., and Ullman, D.E. 1992. Anatomy and ultrastructure of the piercing-sucking mouthparts and paraglossal sensilla of Frankliniella occidentalis pergande Thysanoptera Thripidae. Int. J. Insect Morphol. Embryol. 21: 17–35.

    Article  Google Scholar 

  • James C. 2003. Preview: Global Status of Transgenic Crops: 2003. Ithaca, NY: ISAAA

    Google Scholar 

  • Jones, A.T. 1987. Control of virus infection in crop plants through vector resistance: a review of achievements, prospects and problems. Ann. Appl. Biol. 111: 745–772.

    Google Scholar 

  • Jones, A.T. 1998. Control of virus infection in crops through breeding plants for vector resistance. In: Plant Virus Disease Control. A. Hadidi, R.K. Khetarpal, and H. Koganezawa (Eds). APS Press, St. Paul, MN. 41–55.

    Google Scholar 

  • Juvik, J.A., Shapiro, J.A. Young, T.E. and Mutschler, M.A. 1994. Acylglucoses of the wild tomato Lycopersicon pennellii alter behavior and reduce growth and survival of Helicoverpa zea and Spodoptera exigua. J. Econ. Entomol. 87: 482–492.

    CAS  Google Scholar 

  • Kennedy, B.S., Nielsen, M.T., Severson, R.F., Sisson, V.A., Stephenson, M.K. and Jackson, D.M. 1992. Leaf surface chemicals from Nicotiana affecting germination of Peronospora tabacina sporangia. J. Chem. Ecol. 18: 1467–1479.

    Article  CAS  Google Scholar 

  • Kennedy, G.G. 1976. Host plant resistance and the spread of plant viruses. Environ. Entomol. 5: 827–832.

    Google Scholar 

  • Kennedy, G.G. 2003. Tomatoes, pests, parasitoids, and predators; Tritrophic interactions involving the genus Lycopersicon. Annu. Rev. Entomol. 48: 51–72.

    Article  PubMed  CAS  Google Scholar 

  • King, R.R., Calhoun, L.A., Singh, R.P. and Boucher, A. 1990. Sucrose esters associated with glandular trichomes of wild Lycopersicon species. Phytochemistry 29: 2115–2118.

    Article  CAS  Google Scholar 

  • King, R.R., Singh R.P. and Boucher, A. 1987. Variation in sucrose esters from the type B glandular trichomes of certain wild potato species. Am. Potato J. 64: 529–534.

    Google Scholar 

  • Kogan M. and Ortman E.E. 1978. Antixenosis-a new term proposed to replace Painter’s”nonpreference” modality of resistance. Bull. Entomol. Soc. Am. 24: 175–176.

    Google Scholar 

  • Kramer K.J., Morgan T.D., Throne J.E., Dowell F.E., Bailey M. and Howard J.A. 2000. Transgenic avidin maize is resistant to storage insect pests. Nat. Biotechnol. 18: 670–74

    Article  PubMed  CAS  Google Scholar 

  • Kramer V.C., Morgan M.K. Anderson A.R., Hart H.P., Warren G.W., Dunn; M.M., Chen; J. S. 2001. Insecticidal toxins from Photorhabdus luminescens and nucleic acid sequences coding therefor. US Pat. No. 6281413.

    Google Scholar 

  • Lemke, C.A. and Mutschler, M.A. 1984. Inheritance of glandular trichomes in crosses between Lycopersicon esculentum and L. pennellii. J. Amer. Soc. Hort. Sci. 109: 592–596.

    Google Scholar 

  • Liedl, B.E., Lawson, D.M., White, K.K., Shapiro, J.A., Cohen, D.E., Carson, W.G., Trumble J.T. and Mutschler, M.A. 1995. Acylglucoses of the wild tomato Lycopersicon pennellii (Corr.) D’Arcy alters settling and reduces oviposition of Bemisia tabaci (Homoptera: Aleyrodidae). J. Econ. Entomol. 88: 742–748.

    CAS  Google Scholar 

  • Lin S.Y.H., Trunble J.T. and Kumamoto J. 1987. Activity of volatile compounds in the glandular trichomes of Lycopersicon species against two insect herbivores J. Chem. Ecol. 13: 837–850.

    Article  CAS  Google Scholar 

  • Maluf, W.R., Barbosa, L.V. and Santa-Cecília, L.V.C. 1997. 2-Tridecanone-mediated mechanisms of resistance to the South American tomato pinworm Scrobipalpuloides absoluta (Meyrick, 1917) (Lepidoptera-Gelechiidae) in Lycopersicon spp. Euphytica 93:189–194.

    Article  CAS  Google Scholar 

  • Martin, B., Collar, J.L., Tjallingii, W.F. and Fereres, A. 1997. Intracellular ingestion and salivatin by aphids may cause the acquisition and inoculation of non-persistently transmitted plant viruses. J. Gen. Virol. 78: 2701–2705.

    PubMed  CAS  Google Scholar 

  • Meeusen R.L. and Warren G. 1989 Insect control with genetically engineered crops Annu. Rev. Entomol/ 34: 373–381.

    Article  Google Scholar 

  • Morrison, A. L. 1969. Curly top virus control in California. Calif. Sugar Beet 1969: 28–30.

    Google Scholar 

  • Nagata, T. and Peters, D. 2001. An anatomical perspective of tospovirus transmission. In: Virus-Insect-Plant Interactions. K.F. Harris, O.P. Smith and J.E. Duffus, Eds., Academic Press, San Diego, CA. 51–67.

    Google Scholar 

  • Neal, J.J., W.M. Tingey and J.C. Steffens. 1989. Glandular trichomes of Solanum berthaultii and resistance to the Colorado potato beetle. Entomol. Exp. Appl. 51: 133–140.

    Article  Google Scholar 

  • Neal, J.J., Tingey W.M. and J.C. Steffens. 1990. Sucrose esters of carboxylic acids in glandular trichomes of Solanum berthaultii deter settling and probing by green peach aphid. J. Chem. Ecol. 16: 487–497.

    Article  CAS  Google Scholar 

  • Ng, J.C.K. and Perry, K.L. 2004. Transmission of plant viruses by aphid vectors. Molecular Plant Pathology 5: 505–511.

    Article  Google Scholar 

  • Painter, R.H. 1958. Resistance of plants to insects. Annu. Rev. Entomol 3: 267–290.

    Article  Google Scholar 

  • Panda, N. and Khush, G.S. 1995. Host plant resistance to insects. CAB International, Wallingford.

    Google Scholar 

  • Penaforte, C.L., Prado, V.F., Prado, M.A.M., Romano-Silva, M.A., Guimaraes, P.E., De Marco, L, Gomez, MV and Kalapothakis E.L.. 2000. Molecular cloning of cDNAs encoding insecticidal neurotoxic peptides from the spider Phoneutria nigriventer. Toxicon Oxf. 38: 1443–49.

    Article  CAS  Google Scholar 

  • Perring, T.M., Gruenhagen, N.M. and Farrar, C.A. 1999. Management of plant viral diseases through chemical control of insect vectors. Annu. Rev. Entomol. 44: 457–481.

    Article  PubMed  CAS  Google Scholar 

  • Pillemer, E. A. and Tingey W. M. 1976 Hooked trichomes: a physical plant barrier to a major agricultural pest Science 19: 482–484.

    Article  Google Scholar 

  • Pillemer, E. A. and Tingey W. M. 1978. Hooked trichomes and resistance of Phaseolus vulgaris to Empoasca fabae (Harris). Entom.. Exp. Appl. 24: 83–94

    Article  Google Scholar 

  • Pirone, T.P. and Blanc, S. 1996. Helper-dependent vector transmission of plant viruses. Annu. Rev. Phytopathology 34: 227–247.

    Article  CAS  Google Scholar 

  • Pirone, T.P. and Perry, K.L. 2002. Aphids-nonpersistent transmission. Adv. Bot. Res. 36: 1–19.

    CAS  Google Scholar 

  • Pollard, D.G. 1977. Aphid penetration of plant tissues. In Aphids as Virus Vectors. K.F. Harris and K. Maramorosch eds. Academic Press, New York.

    Google Scholar 

  • Rahbe, Y., Deraison, C., Bonade-Bottino, M., Girard, C., Nardon, C. and Jouanin, L. 2003. Effects of cysteine protease inhibitor oryzacystatin (OC-1) on different aphids and reduced performance of Myzus persicae on OC-1 expressing transgenic oilseed rape. Plant Sci, 164: 441–450.

    Article  CAS  Google Scholar 

  • Reese, J.C., Schwenke, J.R., Lamont P.S. and Zehr, D.D. 1994. Importance and quantification of plant tolerance in crop pest management programs for aphids: Greenbug resistance in sorghum. J. Agr. Entomol. 11: 255–270.

    Google Scholar 

  • Rodriguez, A.E., Tingey, W.M. and Mutschler, M.A. 1993. Acylsugars produced by type IV trichomes of Lycopersicon pennelii (Corr.) D’Arcy deter settling of the green peach aphid, Myzus persicae (Sulzer) (Homoptera: Aphididae). J Econ. Entomol. 86: 34–39.

    CAS  Google Scholar 

  • Sadasivan S. and Thayumanavan B. 2003 Molecular Host Plant Resistance to Pests. Marcel Drekker, Inc. Basel. pp11–12.

    Google Scholar 

  • Severson, R.F., Johnson, A.W. and Jackson, D.M. 1985. Cuticular constituents of tobacco: factors affecting their production and their role in insect and disease resistance and smoke quality. Recent Adv. Tobacco Sci. 11: 105–174.

    CAS  Google Scholar 

  • Shapiro J., Steffens, J. and Mutschler, M.A. 1994. Acylsugars of the wild tomato Lycopersicon pennelii in relation to its geographic distribution. Biochem. Syst. Ecol. 22: 545–561.

    Article  CAS  Google Scholar 

  • Singer, A.C., Crowley, D.E. and Thompson, I.P. 2003. Secondary metabolites in phytoremediation and biotransformation. Trends in Biotech. 2: 123–130.

    Article  CAS  Google Scholar 

  • Smigocki, A.C. and Neal, J.W. 1998. Enhanced insect resistance in plants genetically engineered with a plant hormone gene involved in cytokinin biosynthesis. US Pat. No 5792934.

    Google Scholar 

  • Thresh, J.M. 1971. Some effects of reversion virus on growth and cropping of black currants. J. Hort. Sci. 46: 499–509.

    Google Scholar 

  • Tingey, W.M. 1984. Glycoalkaloids as pest resistance factors. Amer. Potato J. 61: 157–167

    CAS  Google Scholar 

  • Wang, X., Ding, X., Gopalakrishnan, B., Morgan, T.D., Johnson, L., White, F, Muthukrishnan, S., and Kramer, K. J. 1996a. Characterization of a 46 kDa insect chitinase from transgenic tobacco. Insect Biochem. Mol. Biol. 10: 1055–64.

    Article  Google Scholar 

  • Wang, R.Y., Ammar, E.D., Thornbury, D.W., Lopez-Moya, J.J. and Pirone, T.P. 1996b. Loss of potyvirus transmissibility and helper component activity correlate with non retention of virions in aphid stylets. J. Gen. Virol. 77: 861–867.

    Article  PubMed  CAS  Google Scholar 

  • Wang, R.Y., Gergerich, R.C., and Kim, K.S. 1992. Noncirculative transmission of plant viruses by leaf feeding beetles. Phytopathology 82. 946–950.

    Google Scholar 

  • Wijkamp, I., van de Wetering, F., Goldbach, R. and Peters, D. 1996. Transmission of tomato spotted wilt virus by Frankliniela occidentalis: Median acquisition and inoculation access period. Ann. appl. Biol. 129: 303–313.

    Google Scholar 

  • Williams, W.G., Kennedy, G.G., Yamamoto, E.T., Thacker, J.D and Borner, J. 1980. 2-Tridecanone — a naturally occurring insecticide from the wild tomato Lycopersicon hirsutum f. glabratum. Science 207(4433): 888–889.

    Article  CAS  PubMed  Google Scholar 

  • Wintermantel, W.M. 2004. Emergence of greenhouse whitefly (Trialeurodes vaporariorum) transmitted criniviruses as threats to vegetable and fruit production in North America. APSnet Feature June 2004. www.apsnet.org/online/feature/whitefly

    Google Scholar 

  • Wisler, G.C. and Duffus, J.E. 2001. Transmission properties of whitefly-borne criniviruses and their impact on virus epidemiology. In: Virus-Insect-Plant Interactions. K.F. Harris, O.P. Smith and J.E. Duffus, Eds., Academic Press, San Diego, CA. 293–308.

    Google Scholar 

  • Wisler, G.C., Duffus, J.E., Liu, H.-Y., and Li, R.H. 1998. Ecology and epidemiology of whitefly-transmitted closteroviruses. Plant Dis. 82: 270–280.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Mutschler, M.A., Wintermantel, W.M. (2006). Reducing Virus Associated Crop Loss Through Resistance to Insect Vectors. In: Loebenstein, G., Carr, J.P. (eds) Natural Resistance Mechanisms of Plants to Viruses. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3780-5_11

Download citation

Publish with us

Policies and ethics