Skip to main content

Iterative Demodulation and Decoding

  • Chapter
Turbo Code Applications
  • 819 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.E. Shannon, “A mathematical theory of communications,” Bell Syst. Tech. J., vol.27, pp. 379–423, July 1948.

    MathSciNet  Google Scholar 

  2. T. Cover and J. Thomas, Elements of Information Theory, John Wiley, New York, 1991.

    Google Scholar 

  3. H. Nyquist, “Certain topics in telegraph transmission theory,” AIEE Trans., pp. 617–644, 1928.

    Google Scholar 

  4. C. Schlegel and L. Perez, Turbo and Trellis Coding, IEEE/Wiley, Piscataway NJ, 2004.

    Google Scholar 

  5. J.M. Wozencraft and I.M. Jacobs, Principles of Communication Engineering, John Wiley and Sons, New York, 1965, reprinted by Waveland Press, 1993.

    Google Scholar 

  6. R. G. Gallager, “Low-density parity-check codes”, IRE Trans. on Inform. Theory, pp. 21–28, Vol. 8, No. 1, January 1962.

    MATH  MathSciNet  Google Scholar 

  7. C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correcting coding and decoding: Turbo-codes,” Proc. 1993 IEEE ICC, Geneva, Switzerland, pp. 1064–1070, 1993.

    Google Scholar 

  8. C. Berrou and A. Galvieux, “Near optimum error correcting coding and decoding: turbo-codes,” IEEE Trans. Commun., Vol. 44, No. 10, pp. 1261–1271, Oct. 1996.

    Article  Google Scholar 

  9. D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density parity check codes”, IEE Electronic Letters, vol. 32, no. 18, pp. 1645–1646, August 1996.

    Google Scholar 

  10. D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices”, IEEE Trans. Inform. Theory, vol. IT-45, No. 2, pp. 399–431, March, 1999.

    MathSciNet  Google Scholar 

  11. E. Guizzo, “Closing in on the perfect code”, IEEE Spectrum, Vol. 41, No. 3, pp. 36–42, Mar. 2004.

    Article  Google Scholar 

  12. R.M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inform. Theory, vol. IT-27, pp. 533–547, September 1981.

    MathSciNet  Google Scholar 

  13. S. Y. Chung, G. D. Forney, T. J. Richardson and R. Urbanke, “On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit”, IEEE Comm. Letters, vol. COMM-5, no. 2, pp. 58–60, February, 2001.

    Google Scholar 

  14. R.A. Horn and J.C. Johnson, Matrix Analysis, Cambridge University Press, New York, 1990.

    Google Scholar 

  15. A.J. Viterbi, CDMA: Principles of Spread Spectrum Communication, Prentice Hall, 1995.

    Google Scholar 

  16. R.E. Ziemer, R.L. Peterson, D.E. Borth Introduction to Spread Spectrum Communications Pearson Education, 1995.

    Google Scholar 

  17. J.G. Proakis, Digital Communications, McGraw-Hill, Inc., 1995.

    Google Scholar 

  18. E. Telatar, “Capacity of Multi-antenna Gaussian Channels,” Europ. Trans. Telecommunications, vol. 42, no. 2/3/4, pp. 1617–1627, Nov.–Dec. 1999.

    Google Scholar 

  19. G.J. Foschini, “Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas,” Bell Labs Tech. J., vol. 1, Aug. 1996, pp. 41–59.

    Article  Google Scholar 

  20. T.L. Marzetta and B.M. Hochwald, “Capacity of a mobile multiple-antenna communication link in Rayleigh flat fading,” IEEE Trans. Inform. Theory, vol. 45, no. 1, pp. 139–157, Jan. 1999.

    Article  MathSciNet  Google Scholar 

  21. Z. Bagley and C. Schlegel, “Classification of correlated flat fading MIMO channels,” Proc. Third Canadian Workshop on Inform. Theory, Vancouver, Canada, June 2001.

    Google Scholar 

  22. D. Gesbert, H. Bölcskei, D.A. Gore, and A.J. Paulraj, “Outdoor MIMO wireless channels: Models and performance prediction,” IEEE Trans. Commun., to appear.

    Google Scholar 

  23. A.L. Swindlehurst, G. German, J. Wallace, M. Jensen, “Experimental measurements of capacity for MIMO indoor wireless channels,” 3rd IEEE Signal Proc. Wshp., Taiwan, Mar. 20–25, 2001.

    Google Scholar 

  24. P. Goud Jr, C. Schlegel, R. Hang, W. Krzymien, Z. Bagley, “MIMO Channel Measurements for an Indoor Office Environment,” IEEE Wireless’ 03, July 7–9, Calgary, AB, Canada.

    Google Scholar 

  25. P. Goud Jr, C. Schlegel, W.A. Krzymien, R. Hang, “Multiple Antenna Communication Systems-An Emerging Technology,” Canadian Journal of Electrical and Computer Engineering, accepted for publication.

    Google Scholar 

  26. C. Schlegel and A. Grant, Coordinated Multiple User Communications, Springer Publishers, 2005.

    Google Scholar 

  27. G.J. Foschini and M.J. Gans, “On limits of wireless communication in a fading environment when using multiple antennas,” Wireless Personal Commun., vol. 6, no. 3, pp. 311–355, Mar. 1998.

    Google Scholar 

  28. R. Lupas and S. Verdú, “Linear multiuser detectors for synchronous code-division multiple-access channels,” IEEE Trans Inform. Theory, vol. 35, no. 1, pp. 123–136, January 1989.

    Article  MathSciNet  Google Scholar 

  29. P. D. Alexander, L. K. Rasmussen, and C. Schlegel, “A linear receiver for coded multiuser CDMA,” IEEE Trans. Commun., vol. 45, pp. 605–610, May 1997.

    Article  Google Scholar 

  30. Z.D. Bai and Y.Q. Yin, “Limit of the smallest eigenvalue of large dimensional sample covariance matrix,” Ann. Probab., vol. 21, pp. 1275–1294, 1993.

    MathSciNet  Google Scholar 

  31. S. Verdú and S. Shamai, “Spectral Efficiency of CDMA with Random Spreading,” IEEE Trans. Inform. Theory, vol. 45, pp. 622–640, March 1999.

    MathSciNet  Google Scholar 

  32. Z. Xie, R. Short, and C. Rushforth, “A family of suboptimum detectors for coherent multiuser communications,” IEEE. J. Select. Areas Commun., vol. 8, no. 4, pp. 683–690, May 1990.

    Article  Google Scholar 

  33. P. B. Rapajic and B. S. Vucetic, “Adaptive receiver structures for asynchronous CDMA systems,” IEEE J. Select. Areas Commun., vol. 12, no. 4, pp. 685–697, May 1994.

    Article  Google Scholar 

  34. U. Madhow and M.L. Honig, “MMSE interference suppression for direct-sequence spread-spectrum CDMA,” IEEE Trans. Commun., vol. 42, no. 12, pp. 3178–3188, Dec. 1994.

    Article  Google Scholar 

  35. O. Axelsson, Iterative Solution Methods, Cambridge University Press, 1994.

    Google Scholar 

  36. Gilbert Strang, Linear Algebra and its Applications, Harcourt Brace, 3 edition, 1988.

    Google Scholar 

  37. H. Elders-Boll, H-D. Schotten, and A. Busboom, “Efficient implementation of linear multiuser detectors for asynchronous CDMA systems by linear interference cancellation,” Europ. Trans. Telecommun, vol. 9, pp. 427–438, Sept–Oct. 1998.

    Google Scholar 

  38. M.K. Varanasi and B. Aazhang, “Multistage detection in asynchronous code-division multiple-access communications,” IEEE Trans. Commun., vol. 38, No. 4, pp. 509–519, April 1990.

    Article  Google Scholar 

  39. A. Grant and C. Schlegel “Iterative Implementations for Linear Multiuser Detectors” IEEE Trans. Commun., vol. 49, pp. 1824–1834, October 2001.

    Google Scholar 

  40. C. Schlegel, Z. Shi, and M. Burnashev, “Asymptotically Optimal Power Allocation and Code Selection for Iterative Joint Detection of Coded Random CDMA,” IEEE Trans. Inform. Theory, in revision.

    Google Scholar 

  41. M. Moher, “An Iterative Multiuser Decoder for Near-Capacity Communications”, IEEE Trans. Commun., vol. 47, pp. 870–880, July 1998.

    Google Scholar 

  42. S. ten Brink, “Convergence behavior of iteratively decoded parallel concatenated codes,” IEEE Trans. Commun., vol. 49, no. 10, October, 2001.

    Google Scholar 

  43. D. Divsalar, S. Dolinar, and F. Pollara, “Iterative Turbo decoder analysis based on density evolution,” TMO Progress Report 42-144, February 15, 2001.

    Google Scholar 

  44. X. Wang and H.V. Poor, “Iterative (Turbo) Soft Interference Cancellation and Decoding for Coded CDMA”, IEEE Trans. Commun., vol. 47, no. 7, July 1999.

    Google Scholar 

  45. D. Tse and S. Hanly, “Linear Multiuser Receivers: Effective interference, effective bandwidth and user capacity,” IEEE Trans. Inform. Theory, vol. 45, pp. 641–657, Mar. 1999.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Schlegel, C. (2005). Iterative Demodulation and Decoding. In: Sripimanwat, K. (eds) Turbo Code Applications. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3685-X_6

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3685-X_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3686-6

  • Online ISBN: 978-1-4020-3685-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics