Skip to main content

Digitally Reconstructed Porous Media: Transport and Sorption Properties

  • Chapter
Upscaling Multiphase Flow in Porous Media

Abstract

The basic aim of this work is to present a combination of techniques for the reconstruction of the porous structure and the study of transport properties in porous media. The disordered structure of porous systems like random sphere packing, Vycor glass and North Sea chalk, is represented by three-dimensional binary images. The random sphere pack is generated by a standard ballistic deposition procedure, while the chalk and the Vycor matrices by a stochastic reconstruction technique. The transport properties (Knudsen diffusivity, molecular diffusivity and permeability) of the resulting 3-dimensional binary domains are investigated through computer simulations. Furthermore, physically sound spatial distributions of two phases filling the pore space are determined by the use of a simulated annealing algorithm. The wetting and the non-wetting phases are initially randomly distributed in the pore space and trial-and-error swaps are performed in order to attain the global minimum of the total interfacial energy. The effective diffusivities of the resulting domains are then computed and a parametric study with respect to the pore volume fraction occupied by each phase is performed. Reasonable agreement with available data is obtained in the single- and multi-phase transport cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, P. M.: 1992, Porous Media: Geometry and Transports. Butterworth, London.

    Google Scholar 

  • Adler, P. M., Jacquin C. J. and Quiblier J. A.: 1990, Flow in simulated porous media. Int. J. Multiphase Flow 16, 691.

    Article  Google Scholar 

  • Archie, G. E.: 1942, The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. AIME 54, 146.

    Google Scholar 

  • Bekri, S., Vizika, O., Thovert, J.-F. and Adler P. M.: 2002, Binary two-phase flow with phase change in porous media, Int. J. Multiphase Flow 27, 477.

    Article  Google Scholar 

  • Bekri, S., Xu, K., Yousefian, F., Adler, P. M., Thovert, J.-F., Muller, J., Iden, K., Psyllos, A., Stubos, A. K. and Ioannidis M. A.: 2000, Pore geometry and transport properties in North Sea chalk. J. Petroleum Sci. Eng. 25, 107.

    Article  Google Scholar 

  • Berkowitz, B. and Hansen D. P.: 2001, A numerical study of the distribution of water in partially saturated porous rock. Transport Porous Media 45, 301.

    Article  Google Scholar 

  • Bernal, J. D.: 1959, A geometrical approach to the structure of liquids. Nature 183, 141.

    Google Scholar 

  • Bird, G. A.: 1976, Molecular Gas Dynamics. Clarendon, Oxford.

    Google Scholar 

  • Bird, R. B., Stewart, W. E. and Lightfoot E. N.: 1960, Transport Phenomena. John Wiley and Sons.

    Google Scholar 

  • Boving, T. B. and Grathwohl, P.: 2001, Tracer diffusion coefficients in sedimentary rocks: correlation to porosity and hydraulic conductivity. J. Contam. Hydrol. 53, 85.

    Article  Google Scholar 

  • Bryant, S, Mason, G and Mellor, D.: 1996, Quantification of spatial correlation in porous media and its effect on mercury porosimetry. J. Colloid Interface Sci. 177, 88.

    Article  Google Scholar 

  • Coelho, D., Thovert, J.-F. and Adler, P. M.: 1997, Geometrical and transport properties of random packings of spheres and aspherical particles. Phys. Rev. E 55, 1959.

    Article  Google Scholar 

  • Coker, D. A. and Torquato, S.: 1995, Simulation of diffusion and trapping in digitized porous media. J. Appl. Phys. 77, 6087.

    Article  Google Scholar 

  • Debye, P., Anderson, H. R. and Brumberger, H.: 1957, J. Appl. Phys. 28, 679.

    Article  Google Scholar 

  • Gelb, L. D., Gubbins, K. E.: 1998, Characterization of porous glasses: simulation models, adsorption isotherms, and the Brunauer-Emmett-Teller analysis method. Langmuir 14, 2097.

    Article  Google Scholar 

  • Glover, P. W. J., Hole, M. J., Pous, J.: 2000, A modified Archie's law for two conducting phases. Earth Planet Sci. Lett. 180, 369.

    Article  Google Scholar 

  • Joshi, M. Y.: 1974, A Class of stochastic models for porous media, PhD Thesis, University of Kansas.

    Google Scholar 

  • Kainourgiakis, M. E., Kikkinides, E. S., Steriotis, Th.A., Stubos, A. K., Tzevelekos K. P. and Kanellopoulos, N. K.: 2000, Structural and transport properties of alumina porous membranes from process-based and statistical reconstruction techniques. J. Colloid Interface Sci. 231, 158.

    Article  Google Scholar 

  • Kainourgiakis, M. E., Kikkinides, E. S., Stubos, A. K. and Kanellopoulos N. K.: 1999, Simulation of self-diffusion of point-like and finite-size tracers in stochastically reconstructed Vycor porous glasses. J. Chem. Phys. 111, 2735.

    Article  Google Scholar 

  • Kim, I. C. and Torquato, S.: 1992, Diffusion of finite-sized Brownian particles in porous media. J. Chem. Phys. 96, 1498.

    Article  Google Scholar 

  • Kirkpatrick, S., Gelatt C. D. and Vecchi, M. P.: 1983, Optimization by simulated annealing. Science 200, 671.

    Google Scholar 

  • Knight, R., Chapman, A. and Knoll, M.: 1990, Numerical modeling of microscopic fluid distribution in porous media. J. Appl. Phys. 68, 994.

    Article  Google Scholar 

  • Leverett, M. C.: 1939, Flow of oil-water mixtures through unconsolidated sands. Trans. AIME 132, 149.

    Google Scholar 

  • Levitz, P., Ehret, G., Sinha, S. K. and Drake, J. M.: 1991, Porous Vucor glass — The microstructure as probed by electron-microscopy, direct energy-transfer, small-angle scattering, and molecular adsorption. J. Chem. Phys. 95, 6151.

    Article  Google Scholar 

  • Levitz, P., and Tchoubar, D.: 1992, Disordered porous solids — from chord distributions to small angle scattering. J. Phys. I 2, 771.

    Article  Google Scholar 

  • Lin, M. Y., Abeles, B., Huang, J. S., Stasiewski, H. E. and Zhang, Q.: 1992, Viscous flow and diffusion of liquids in microporous glasses. Phys. Rev. B 46, 10701.

    Article  Google Scholar 

  • Makri, P. K., Romanos, G., Steriotis Th., Kanellopoulos, N. K. and Mitropoulos A. Ch.: 1998, Diffusion in a fractal system. J. Colloid Interface Sci. 206, 605.

    Article  Google Scholar 

  • Manwart, C., Torquato, S and Hilfer, R.: 2000, Stochastic reconstruction of sandstones. Phys. Rev. E 62, 893.

    Article  Google Scholar 

  • Martys N. S.: 1999, Diffusion in partially-saturated porous materials. Materi. Struct. 32, 555.

    Google Scholar 

  • Martys, N. and Garboczi, E. J.: 1992, Length scales relating the fluid permeability and electrical conductivity in random two-dimensional model porous media. Phys. Rev. B 46, 6080.

    Article  Google Scholar 

  • Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, F.: 1953, Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087.

    Article  Google Scholar 

  • Mohanty, S.: 1997, Effect of multiphase fluid saturation on the thermal conductivity of geologic media. J. Phys. D: Appl. Phys. 30, L80.

    Article  Google Scholar 

  • Papadopoulos, G.: 1993, Study of adsorption, diffusion and gas relative permeability in mesoporous alumina membranes, in relation to their porous and macroscopic structure, Ph.D. thesis (in Greek), University of Athens.

    Google Scholar 

  • Pavlovitch, A., Jullien, R. and Meakin, P.: 1991, Geometrical properties of a random packing of hard spheres. Physica A 176, 206.

    Article  Google Scholar 

  • Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P.: 1992, Numerical Recipes in Fortran. Cambridge University Press.

    Google Scholar 

  • Quiblier J. A.: 1986, New 3-dimensional modeling technique for studying porous media. J. Colloid Interface Sci. 98, 84.

    Google Scholar 

  • Reiss, H.: 1992, Statistical geometry in the study of fluids and porous media. J. Phys. Chem. 96, 4736.

    Article  Google Scholar 

  • Roberts, J. N. and Schwartz, L. M.: 1985, Grain consolidation and electrical conductivity in porous media. Phys. Rev. B 31 5990.

    Article  Google Scholar 

  • Rosanne, M., Mammar, N., Koudina, N., Prunet-Foch, B, Thovert, J.-F., Tevissen, E. and Adler P. M.: 2003, Transport properties of compact clays — II. Diffusion. J. Colloid Interface Sci. 260, 195.

    Article  Google Scholar 

  • Schwartz, L. M., Garboczi, E. J. and Bentz, D. P.: 1995, Interfacial transport in porous media — Application to DC electrical conductivity of mortars. J. Appl. Phys. 78, 5898.

    Article  Google Scholar 

  • Silverstein, D. L. and Fort, T.: 2000, Prediction of air-water interfacial area in wet unsaturated porous media. Langmuir 16, 829.

    Article  Google Scholar 

  • Silverstein, D. L. and Fort, T.: 2000a, Incorporating low hydraulic conductivity in a numerical model for predicting air-water interfacial area in wet unsaturated particulate porous media. Langmuir 16, 835.

    Article  Google Scholar 

  • Silverstein, D. L. and Fort, T.: 2000b, Prediction of water configuration in wet unsaturated porous media. Langmuir 16, 839.

    Article  Google Scholar 

  • Stefanopoulos, K. L., Beltsios, K., Makri, P. K., Steriotis, T. A., Mitropoulos, A. Ch. and Kanellopoulos, N. K.: 2000, Characterization of the flow properties in Vycor by combining dynamic and scattering techniques. Physica B 276, 477.

    Article  Google Scholar 

  • Tomadakis, M. M. and Sotirchos, S. V.: 1993, Ordinary and transition regime diffusion in random fiber structures. AIChE J. 39, 397.

    Article  Google Scholar 

  • Visscher, W. M. and Bolsterli, M: 1972, Random packing of equal and unequal spheres in 2 and 3 dimensions. Nature 239, 504.

    Article  Google Scholar 

  • Vold M. J.: 1960, The sediment volume in dilute dispersions of spherical particles. J. Phys. Chem. 64, 1616.

    Google Scholar 

  • Yao, J., Frykman, P., Kalaydjian, F., Thovert, J. F. and Adler, P M.: 1993, High order moments of the phase function for real and reconstructed model porous media. A comparison. J. Colloid Interface Sci. 156, 478.

    Article  Google Scholar 

  • Yeong, C. L. Y. and Torquato, S.: 1998a, Reconstructing random media. Phys. Rev. E 57, 495.

    Article  Google Scholar 

  • Yeong, C. L. Y. and Torquato S.: 1998b, Reconstructing random media. II. Three-dimensional media from two-dimensional cuts. Phys. Rev. E 58, 224.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Kainourgiakis, M.E., Kikkinides, E.S., Galani, A., Charalambopoulou, G.C., Stubos, A.K. (2005). Digitally Reconstructed Porous Media: Transport and Sorption Properties. In: Das, D., Hassanizadeh, S. (eds) Upscaling Multiphase Flow in Porous Media. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3604-3_4

Download citation

Publish with us

Policies and ethics