Skip to main content

Introduction

  • Chapter
Fracture Mechanics

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 123))

  • 8888 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nadai, A. (1950) Theory of Flow and Fracture of Solids, McGraw-Hill, New York.

    Google Scholar 

  2. Griffith, A.A. (1921) ‘The phenomena of rupture and flow in solids’, Philosophical Transactions of the Royal Society of London A221, 163–198.

    Google Scholar 

  3. Griffith, A.A. (1924) ‘The theory of rupture’, Proceedings of First International Congress of Applied Mechanics, Delft, pp. 55–63.

    Google Scholar 

  4. Finally report of the board to investigate ‘The design and methods of construction of welded steel merchant vessels’, July 15 (1946), Government Printing Office, Washington (1947); reprinted in part in Welding Journal 26, 569–619 (1947).

    Google Scholar 

  5. Technical progress report of the ship structure committee (1948) Welding Journal 27, 337s.

    Google Scholar 

  6. Second technical report of the ship structure committee, July 1 (1950); reprinted in Welding Journal 30, 169s–181s (1951).

    Google Scholar 

  7. Williams, M.L. and Ellinger, G.A. (1953) ‘Investigation of structural failures of welded ships’, Welding Journal 32, 498s–527s.

    Google Scholar 

  8. Boyd, G.M. (1969) ‘Fracture design practices for ship structures’, in Fracture—An Advance Treatise, Vol. V, Fracture Design of Structures (ed. H. Liebowitz), Pergamon Press, pp. 383–470.

    Google Scholar 

  9. Parker, E.R. (1957) Brittle Behavior of Engineering Structures, Wiley, New York.

    Google Scholar 

  10. Shank, M.E. (1954) ‘Brittle failure of steel structures—a brief history’, Metal Progress 66, 83–88.

    Google Scholar 

  11. Fractured girders of the King’s Bridge, Melbourne (1964) Engineering 217, 520–522.

    Google Scholar 

  12. Bishop, T. (1955) ‘Fatigue and the Comet disasters’, Metal Progress 67, 79–85.

    Google Scholar 

  13. Yukawa, S., Timo, D.P, and Rudio, A. (1969) ‘Fracture design practices for rotating equipment’, in Fracture—An Advanced Treatise, Vol. V, Fracture Design of Structures (ed. H. Liebowitz), Pergamon Press, pp. 65–157.

    Google Scholar 

  14. Duffy, A.R., McClure, G.M., Eiber, R.J. and Maxey, W.A. (1969) ‘Fracture design practices for pressure piping’, in Fracture—An Advanced Treatise, Vol. V, Fracture Design of Structures (ed. H. Liebowitz), Pergamon Press, pp. 159–232.

    Google Scholar 

  15. Adachi, J. (1969) ‘Fracture design practices for ordnance structures’, in Fracture—An Advanced Treatise, Vol. V, Fracture Design of Structures (ed. H. Liebowitz), Pergamon Press, pp. 285–381.

    Google Scholar 

  16. Kuhn, P. (1969) ‘Fracture design analysis for airflight vehicles’, in Fracture—An Advanced Treatise, Vol. V, Fracture Design of Structures (ed. H. Liebowitz), Pergamon Press, pp. 471–500.

    Google Scholar 

  17. Timoshenko, S.P. (1953) History of the Strength of Materials, McGraw-Hill, New York.

    Google Scholar 

  18. Irwin, G.R. and Wells, A.A. (1965) ‘A continuum-mechanics view of crack propagation’, Metallurgical Reviews 10, 223–270.

    Google Scholar 

  19. Todhunter, I. and Pearson, K. (1986) History of the Theory of Elasticity and of the Strength of Materials, Sections 1503 and 936, Cambridge Univ. Press.

    Google Scholar 

  20. Stanton, T.E. and Batson, R.G.C. (1921) Proceedings of the Institute of Civil Engineers 211, 67–100.

    Google Scholar 

  21. Docherty, J.G. (1932) ‘Bending tests on geometrically similar notched bar specimens’, Engineering 133, 645–647.

    Google Scholar 

  22. Docherty, J.G. (1935) ‘Slow bending tests on large notched bars’, Engineering 139, 211–213.

    Google Scholar 

  23. Irwin, G.R. (1964) ‘Structural aspects of brittle fracture’, Applied Materials Research 3, 65–81.

    Google Scholar 

  24. Kommers, J.B. (1912) International Association for Testing Materials 4A, 4B.

    Google Scholar 

  25. Inglis, C.E. (1913) ‘Stresses in plate due to the presence of cracks and sharp corners’, Transactions of the Institute of Naval Architects 55, 219–241.

    Google Scholar 

  26. Traube, I. (1903) ‘Die physikalischen Eigenschaften der Elemente vom Standpunkte der Zustandsgleichung von van der Waals’, Zeitschrift für Anorganische Chemie XXXIV, 413–426.

    Google Scholar 

  27. Karmarsch, I. (1858) Mitteilungen des gew. Ver für Hannover, pp. 138–155.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

(2005). Introduction. In: Fracture Mechanics. Solid Mechanics and Its Applications, vol 123. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3153-X_1

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3153-X_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2863-2

  • Online ISBN: 978-1-4020-3153-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics