Skip to main content

Transition to Self-Organized High Confinement States in Tokamak Plasmas

Transition to H-mode in Tokamak Plasmas

  • Chapter
Nonequilibrium Phenomena in Plasmas

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 321))

  • 832 Accesses

Abstract

Shear flow stabilization of edge turbulence leads to self-organized high (H) confinement modes in tokamak plasmas. Thus understanding the mechanisms for generation of shear/zonal flow and fields in finite β plasmas is an important area of research. A brief review of various mechanisms for shear flow generation and discussion of our recent theory which yields a criterion for bifurcation from low to high (L-H) confinement mode is presented. The predicted threshold based on this parameter shows good agreement with edge measurements on discharges undergoing L-H transitions in DIII-D with ▽B both towards and away from the X-point, as well as for pellet induced H-modes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boedo, J. A., M. J. Schaffer, R. Maingi, and C. J. Lasnier, Electric field-induced plasma convection in tokamak divertors, Phys. Plasmas, 7, 1075, 2000.

    Article  ADS  Google Scholar 

  • Burrell, K. H., and DIII-D Team, Physics of the L-mode to H-mode transition in tokamaks, Plasma Phys. Controlled Fusion 34, 1859, 1992.

    Article  ADS  Google Scholar 

  • Carlstrom, T. N., G. L. Campbell, J. C. DeBoo et al., Design and operation of the multipulse Thomson scattering diagnostic on DIII-D, Rev. Sci. Instrum., 63, 4901, 1992.

    Article  ADS  Google Scholar 

  • Carlstrom, T. N., K. H. Burrell, R. J. Groebner, A. W. Leonard, T. H. Osborne, and D. M. Thomas, Comparison of L-H transition measurements with physics models, Nucl. Fusion, 39, 1941, 1999.

    Article  ADS  Google Scholar 

  • Carlstrom, T. N., J. A. Boedo, and K. H. Burrell, et al., Edge Er structure and the ▽B effect on the L-H transition, 2000 Proc. 27th Eur. Phys. Soc. Conf. on Controlled Fusion and Plasma Physics (Budapest, Hungary), vol. 24B (Budapest: European Physical Society), p. 756, (2000).

    Google Scholar 

  • Chen, Liu, Zhihong Lin, and Roscoe White, Excitation of zonal flow by drift waves in toroidal plasmas, Phys. Plasmas, 7, 3129, 2000.

    Article  ADS  Google Scholar 

  • Connor, J. W., R. J. Hastie, H. R. Wilson, and R. L. Miller, Magnetohydrodynamic stability of tokamak edge plasmas, Phys. Plasmas, 5, 2687, 1998.

    Article  ADS  Google Scholar 

  • Connor, J. W., and H. R. Wilson, A review of theories of the L-H transition, Plasma Phys. Controlled Fusion, 42, R1, 2000.

    Article  ADS  Google Scholar 

  • Connor, J. W., and O. P. Pogutse, Influence of an X-point on the L-H transition power threshold, Phys. Plasmas Controlled Fusion, 43, 281, 2001.

    Article  ADS  Google Scholar 

  • Deranian, R. D., R. G. Groebner, and D. T. Pham, Use of a pattern recognition algorithm to obtain a parametrization of low-mode and high-mode plasma states, Phys. Plasmas, 9, 2667, 2002.

    Article  ADS  Google Scholar 

  • Drake, J., J. Finn, P. Guzdar, V. Shapiro, V. Shevchenko, F. Waelbroeck, A. Hassam, C. S. Liu, and R. Sagdeev, Peeling of convection cells and the generation of sheared flow, Phys. Fluids B, 4, 488, 1992.

    Article  ADS  Google Scholar 

  • Finn, J. M., J. F. Drake, and P. N. Guzdar, Instability of fluid vortices and generation of sheared flow, Phys. Fluids B, 4, 2758, 1992.

    Article  ADS  Google Scholar 

  • Gohil, P., R. Baylor, T. C. Jernigan, K. H. Burrell, and T. N. Carlstrom, Investigations of H-mode plasmas triggered directly by pellet injection in the DIII-D tokamak, Phys. Rev. Lett., 86, 644, 2001.

    Article  ADS  Google Scholar 

  • Groebner, R. J., An emerging understanding of H-mode discharges in tokamaks, Phys. Fluids B, 5, 2343, 1993.

    Article  ADS  Google Scholar 

  • Groebner, R. J., D. M. Thomas, and R. D. Deranian, Evidence for edge gradients as control parameters of the spontaneous high-mode transition, Phys. Plasmas, 8, 2722, 2001.

    Article  ADS  Google Scholar 

  • Guzdar, P. N., J. F. Drake, A. B. Hassam, D. McCarthy, and C. S. Liu, Three-dimensional fluid simulations of the nonlinear drift-resistive ballooning modes in tokamak edge plasmas, Phys. Fluids B, 5, 3712, 1993.

    Article  ADS  Google Scholar 

  • Guzdar, P. N., Shear-flow generation by drift/Rossby waves, Phys. Plasmas, 2, 4174, 1995.

    Article  MathSciNet  ADS  Google Scholar 

  • Guzdar, P. N., R. G. Kleva, and L. Chen, Shear flow generation by drift waves revisited, Phys. Plasmas, 8, 459 2001a.

    Article  ADS  Google Scholar 

  • Guzdar, P. N., R. G. Kleva, A. Das, and P. K. Kaw, Zonal flow and zonal magnetic field generation by finite beta drift waves: A theory for L-H transitions in tokamaks, Phys. Rev. Lett. 86, 15001, 2001b.

    Article  Google Scholar 

  • Guzdar, P. N., R. G. Kleva, A. Das, and P. K. Kaw, Zonal flow and field generation by finite beta drift waves and kinetic drift-Alfven waves, Phys. Plasmas, 8, 3907, 2001c.

    Article  ADS  Google Scholar 

  • Guzdar, P. N., R. G. Kleva, R. J. Groebner, and P. Gohil, Comparison of a low to high confinement transition theory with experimental data from DIII-D, Phys. Rev. Lett. 89, 24001, 2002.

    Article  Google Scholar 

  • Guzdar, P. N., R. G. Kleva, A. Das, P. K. Kaw, R. J. Groebner, and P. Gohil, Low to high confinement transition theory of finite-beta drift-wave driven shear flow and its comparison with data from DIII-D, to appear in Phys. Plasmas, 2003.

    Google Scholar 

  • Hassam, A. B., T. M. Antonsen, Jr., J. F. Drake, and C. S. Liu, Spontaneous poloidal spin-up of tokamaks and the transition to the H mode, Phys. Rev. Lett., 66, 309, 1991.

    Article  ADS  Google Scholar 

  • Hermiz, K. B., P. N. Guzdar, and J. M. Finn, Improved low-order model for shear flow driven by Rayleigh-BÈnard convection, Phys. Rev. E, 51, 325, 1995.

    Article  ADS  Google Scholar 

  • Howard, L. N., and R. Krishnamurti, Large-scale flow in turbulent convection: a mathematical model, J. Fluid Mech., 170, 385, 1986.

    Article  ADS  MATH  Google Scholar 

  • Hubbard, A. E., R. L. Boivin, J. F. Drake, M. Greenwald, Y. In, J, H, Irby, B. N. Rogers, and J. A. Snipes, Local variables affecting H-mode threshold on Alcator C-Mod, Plasma Phys. Controlled Fusion, 40, 689, 1998.

    Article  ADS  Google Scholar 

  • Itoh, S.-I., and K. Itoh, Model of L to H-mode transition in tokamak, Phys. Rev. Lett., 60, 2276, 1988.

    Article  ADS  Google Scholar 

  • Jenko, F., W. Dorland, M. Kotschenreuther and B. N. Rogers, Electron temperature gradient driven turbulence, Phys. Plasmas, 7, 1904, 2000.

    Article  ADS  Google Scholar 

  • Kaw, P. K., and R. Singh, Coherent nonlinear states of drift wave turbulence modulated by self consistent zonal flow, Bull. Am. Phys. Soc. 44, No1. Part II, RP01(109), 1262, 1999.

    Google Scholar 

  • Kerner, W., Yu. Igitkhanov, G. Janeschitz, and O. Pogutse, The scaling of the edge temperature in tokamaks based on the Alfven drift-wave turbulence, Contrib. Plasma Phys., 38, 118, 1998.

    Article  ADS  Google Scholar 

  • Lebedev, V. B., P. H. Diamond, V. D. Shapiro, and G. I. Soloviev, Modulational interaction between drift waves and trapped ion convective cells: A paradigm for the self-consistent interaction of large-scale sheared flows with small-scale fluctuations, Phys. Plasmas, 2, 4420, 1995.

    Article  ADS  Google Scholar 

  • Mahajan, S. M., and Z. Yoshida, A collisionless self-organizing model for the high-confinement (H-mode) boundary layer, Phys. Plasmas, 7, 635, 2000.

    Article  MathSciNet  ADS  Google Scholar 

  • Meyer, H., A. Kirk, L. C. Appel et al., The effect of magnetic configurations on H-mode in MAST, 2002 Proc. 29th Eur. Phys. Soc. Conf. on Controlled Fusion and Plasma Physics (Montreux, Switzerland), vol. 26B (ECA), P-1.056 2002.

    Google Scholar 

  • Rogers, B., J. F. Drake, and A. Zeiler, Phase space of tokamak edge turbulence, the L-H transition, and the formation of the edge pedestal, Phys. Rev. Lett., 81, 4396, 1998.

    Article  ADS  Google Scholar 

  • Rogers, B. N., W. Dorland, and M. Kotschenreuther, Generation and stability of zonal flows in ion-temperature-gradient mode turbulence, Phys. Rev. Lett., 85, 5336, 2000.

    Article  ADS  Google Scholar 

  • Rozhansky, V., and M. Tendler, The effect of the radial electric field on the L-H transitions in tokamaks, Phys. Fluids B, 4, 1877, 1992.

    Article  ADS  Google Scholar 

  • Sagdeev, R. Z., V. D. Shapiro, and V. I. Shevchenko, Convective clees and anomalous plasma diffusion, Sov. J. Plasma Phys., 4, 306, 1979.

    Google Scholar 

  • Shaing, K. C., and E. C. Crume, Bifurcation theory of poloidal rotation in tokamaks: A model for L-H transition, Phys. Rev. Lett., 63, 2369, 1989.

    Article  ADS  Google Scholar 

  • Shapiro, V. D., P. H. Diamond, V. B. Lebedev, G. I. Soloviev, and V. I. Shevchenko, Generation of dipolar structures in drift wave turbulence, Plasma Phys. Controlled Fusion, 35, 1033, 1993.

    Article  ADS  Google Scholar 

  • Smolyakov, A. I., P. H. Diamond, and M. Malkov, Coherent structure phenomena in drift wavezonal flow turbulence, Phys. Rev. Lett., 84, 491, 2000a.

    Article  ADS  Google Scholar 

  • Smolyakov, A. I., P. H. Diamond, and V. I. Shevchenko, Zonal flow generation by parametric instability in magnetized plasmas and geostrophic fluids, Phys. Plasmas, 7, 1349, 2000b.

    Article  MathSciNet  ADS  Google Scholar 

  • Suttrop, W., V. Mertens, H. Murmann, J. Neuhauser, J. Schweinzer, and ASDEX-Upgrade Team, Operational limits for high edge density H-mode tokamak operation, J. Nucl. Mater., 266–269(O), 118, 1999.

    Article  Google Scholar 

  • Wagner, F., and ASDEX Team. Regime of improved confinement and high beta in neutral-beam-heated divertor discharges of the ASDEX tokamak, Phys. Rev. Lett., 49, 1408, 1982.

    Article  ADS  Google Scholar 

  • Xu, X. Q., R. H. Cohen, T. D. Rognlien, and J. R. Myra, Low-to-high confinement transition simulations in divertor geometry, Phys. Plasma, 7, 1951, 2000.

    Article  ADS  Google Scholar 

  • Zeiler, A., J. F. Drake, and B. Rogers, Nonlinear reduced Braginskii equations with ion thermal dynamics in toroidal plasma, Phys. Plasmas, 4, 2134, 1997.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Guzdar, P.N., Kleva, R.G., Groebner, R.J., Gohil, P. (2005). Transition to Self-Organized High Confinement States in Tokamak Plasmas. In: Burton, W., et al. Nonequilibrium Phenomena in Plasmas. Astrophysics and Space Science Library, vol 321. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3109-2_10

Download citation

Publish with us

Policies and ethics