Skip to main content

Effect of Osmotic Pressure on Gs-Ns0 Expression System

  • Conference paper
Animal Cell Technology Meets Genomics

Part of the book series: ESACT Proceedings ((ESACT,volume 2))

  • 900 Accesses

Abstract

It has been widely reported that metabolism, cell growth, cell density, product secretion and specific antibody productivity in mammalian cells is strongly affected by osmotic conditions. However, because hyper- and hypo-osmotic pressure suppresses cell growth, the enhanced final product concentration of the culture is not observed. Therefore by understanding the basic cellular processes of a GS-NS0 mammalian cell culture system would not only assist in the design of a more efficient mammalian cell culture systems but it will also aid the optimization of the production. Various properties of mammalian culture systems, such as, productivity, cell viability, metabolism, ion balance and the genes regulated during the culture of the GS-NS0 system under osmotic pressure of 210, 290, 370 and 450 mOsm/kg have been identified, and it is shown that there is a decrease in the growth rate of hyper- and hypo-osmotic cultures. Further differences have been identified in calcium accumulation, metabolism of glucose, glutamate and lactate. Additionally it is shown that there are over 600 genes involved in ion transport, accumulation of osmolytes, cell cycle distribution, proliferation, cytoskeletal organization and cell metabolism that are regulated by the changes in osmotic pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 469.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  1. V.M. deZengotita, R.K., W.M. Miller, Effect of CO2 and osmolality on hybridoma cells: growth, metabolism and monoclonal antibody production. Cytotechnology, 1998. 28: p. 213–227.

    Article  CAS  Google Scholar 

  2. M.S. Lee, G.M.L., Hyperosmotic pressure enhances immunoglobulin transcription rates and secretiion rates of KR12H-2 transfoctoma. Biotechnology and Bioengineering, 2000(68): p. 260–268.

    Article  CAS  PubMed  Google Scholar 

  3. J. Lin, M.T., Y. Qu, P. Gao, T. Yoshida, Enhanced monoclonal antibody production by gradual increase of osmotic pressure. Cytotechnology, 1999. 29: p. 27–33.

    Article  CAS  Google Scholar 

  4. W. Zhou, C.C.C., B. Buckland, J. Aunins, Fed-batch culture of recombinant NS0 myeloma cells with high monoclonal antibody production. Biotechnology and Bioengineering, 1997. 55(5): p. 783–792.

    Article  CAS  Google Scholar 

  5. J.S. Ryu, T.K.K., J.Y. Chung, G.M. Lee, Osmoprotective effect of glycine betaine on foreign protein production in hyperosmotic recombinant Chinese hamster ovary cell culture differs among cell line. Biotechnology and Bioengineering, 2000(70): p. 167–175.

    Article  CAS  PubMed  Google Scholar 

  6. M. Cherlet, A.M., Stimulation of monoclonal antibody production of hybridoma cells by butyrate: evaluation of a feeding strategy and characterization of cell beheavour. Cytotechnology, 2000. 32: p. 17–29.

    Article  CAS  Google Scholar 

  7. P.J. Duncan, H.A.J., G. Hobbs, The effect of hyperosmotic conditions on growth and recombinant protein expression by NS0 myeloma cells in culture. The Genetic Engineer and Biotechnologist, 1997. 17: p. 75–78.

    CAS  Google Scholar 

  8. L.M. Bell, M.L.L.L., B. Kim, E. Wang, J. Park, B.A. Hemmings, G.L. Firestone, Hyperosmotic stress stimulates promoter activity and regulates cellular utilization of the serum and glucocorticoid-inducible protein kinas (Sgk) by a p38 MAPK-dependent pathway. The Journal of Biological Chemistry, 2000. 275(33): p. 25262–25272.

    Article  CAS  PubMed  Google Scholar 

  9. J.E. Celis, M.K., I. Gromova, C. Freferikson, M. Ostergaard, T. Thykjaer, P. Gromov, J. Yu, H. Palsdottir, N. Magnusson, T.F. Orntoft, Gene expression profiling: monitoring transcription and translation products using DNA microarray and proteomics. FEBS Letters, 2000(480): p. 2–16.

    Article  CAS  PubMed  Google Scholar 

  10. F. Lang, G.L.B., M. Ritter, H. Volkl, S. Waldegger, E. Gulbins, D. Haussinger, Functional significance of cell volume regulatory mechanisms. Physiological Review, 1998. 78(1): p. 247–306.

    CAS  Google Scholar 

  11. H.C. Causton, B.R., S.S. Koh, C.T. Harbison, E. Kanin, E.G. Jennings, T.I. Lee, H.L. True, E.S. Lander, R.A. Young, Remodeling of yeast genome expression in response to environmental change. Molecular Biology of the Cell, 2001. 12: p. 323–337.

    CAS  PubMed  Google Scholar 

  12. J.S. Ryu, M.S.L., G.M. Lee, Effect of cloned gene dosage on the response of recombinant CHO cells to hyperosmotic pressure in regard to cell growth and antibody production. Biotechnology Progress, 2001. 17: p. 993–999.

    Article  CAS  PubMed  Google Scholar 

  13. M. Cherlet, A.M., Hybridoma cell beheavior in continuous culture under hyperosmotic stress. Cytotechnology, 1999(29): p. 71–84.

    Article  Google Scholar 

  14. S. Matsuda, H.K., T. Moriguchi, Y. Gotoh, E. Nishida, Activation of protein kinas cascades by osmotic shock. Journal of Biological Chemistry, 1995. 270: p. 12781–12786.

    Article  CAS  PubMed  Google Scholar 

  15. F. Guharay, F.S., Stretch-activated single ion channel currents in tissue cultured embryonic chick skeletal muscle. Journal of Physiology, 1984(352): p. 685–701.

    CAS  PubMed  Google Scholar 

  16. R.M. Servesss, W.H., Mutual adhesion of lecithin membranes at ultralow tension. Journal of Physiology, 1989(50): p. 809–827.

    Google Scholar 

  17. G.R. Erickson, L.G.A., F. Guilak, Hyper-osmotic stress induces volume change and calcium transients in chondrocytes by transmembrane, phospholipid, and G-protein pathways. Journal of Biomechanics, 2001. 34: p. 1527–1535.

    Article  CAS  PubMed  Google Scholar 

  18. Haussinger, D., The role of cellular hydration in the regulation of cell function. Journal of Biochemistry, 1996(313): p. 697–710.

    Google Scholar 

  19. Yancey, P.H., Compatible and conteracting solutes, in Cellular and Molecular Physiology of Cell Volume Regulation, K. Strange, Editor. 1994, CRC. p. 81–109.

    Google Scholar 

  20. Berg, M.B., Molecular basis for osmoregulation of organic osmolytes in renal medullary cells. Journal of Experimental Zoology, 1994(268): p. 171–175.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francesc Gòdia Martin Fussenegger

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Wu, MH., Dimopoulos, G., Mantalaris, A., Varley, J. (2005). Effect of Osmotic Pressure on Gs-Ns0 Expression System. In: Gòdia, F., Fussenegger, M. (eds) Animal Cell Technology Meets Genomics. ESACT Proceedings, vol 2. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3103-3_1

Download citation

Publish with us

Policies and ethics