Skip to main content

Nuclear Spin Relaxation and Incommensurate Magnetism in Doped Cuprates

  • Conference paper
  • First Online:
New Challenges in Superconductivity: Experimental Advances and Emerging Theories

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 183))

  • 822 Accesses

Abstract

Existing data on 63Cu-nuclear spin relaxation reveal two independent relaxation processes: the one that is temperature independent we link to incommensurate peaks seen by neutrons, while the “universal” temperature dependent contribution coincides with 1/63T1(T) for two-chain YBCO 124. We argue that this new result substitutes for a “pseudogap” regime in a broad class of high-Tc cuprates and stems from the 1st order phase transition that starts well above the superconductivity Tc but becomes frustrated because of broken electroneutrality in the CuO2 plane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61 (1999).

    Article  ADS  CAS  Google Scholar 

  2. J.L. Tallon and J.M. Loram, Physica C 349, 53 (2001).

    Article  ADS  CAS  Google Scholar 

  3. G.V.M. Williams et al., Phys. Rev. B 58, 15053 (1998).

    Article  ADS  CAS  Google Scholar 

  4. L.P. Gor’kov and A.V. Sokol, JETP Lett. 46, 420 (1987).

    ADS  Google Scholar 

  5. L.P. Gor’kov, Journ. Supercond. 14, 365 (2001).

    Article  ADS  Google Scholar 

  6. J.E. Hirsh, E. Loch et al., Phys. Rev. B 39, 243 (1989).

    Article  ADS  Google Scholar 

  7. J. Zaanen et al., Phys. Rev. B 40, 7391 (1989).

    Article  ADS  CAS  Google Scholar 

  8. V.J. Emery et al., Phys. Rev. Lett. 64, 475 (1990).

    Article  ADS  CAS  Google Scholar 

  9. M. Grilli et al., Phys. Rev. Lett. 67, 259 (1991).

    Article  ADS  CAS  Google Scholar 

  10. S. Oshugi et al., J. Phys. Soc. Jpn. 63, 700 (1994).

    Article  ADS  Google Scholar 

  11. T. Imai et al., Phys. Rev. Lett. 70, 1002 (1993).

    Article  ADS  CAS  Google Scholar 

  12. P. M. Singer et al., Phys. Rev. Lett. 88, 187601 (2002).

    Article  ADS  CAS  Google Scholar 

  13. M. Takigawa et al., Phys. Rev. B 43, 247 (1991).

    Article  ADS  CAS  Google Scholar 

  14. R.E. Walstedt et al., Phys.Rev. B 44, 7760 (1991).

    Article  ADS  CAS  Google Scholar 

  15. S. Uchida et al., Physica C 162–164, 1677 (1989).

    Article  ADS  Google Scholar 

  16. T. Nishikawa et al., J. Phys. Soc. Jpn. 62, 2568 (1993).

    Article  ADS  CAS  Google Scholar 

  17. F. Balakirev et al., Nature 424, 912 (2003).

    Article  ADS  CAS  Google Scholar 

  18. C. M. Varma et al., Phys. Rev. Lett. 63, 1996 (1989).

    Article  ADS  CAS  Google Scholar 

  19. J. Schmallian et al., Phys.Rev. B 60, 667 (1999).

    Article  ADS  Google Scholar 

  20. S.W. Cheong et al., Phys. Rev. Lett. 67, 1791 (1991); ys. Mook et al., Nature 395, 580 (1998); M. Arai et al., Ph B Rev. Lett. 83, 608 (1999); A. Bianconi, Int. J.Mod.Phys. 14, 3289 (2000); P. Dai et al., Phys. Rev. B 63, 054525 (2001).

    Article  ADS  CAS  Google Scholar 

  21. J.M. Tranquada et al., Nature 375, 561 (1995).

    Article  ADS  Google Scholar 

  22. H. Aeppli et al., Science 278, 1432 (1997).

    Article  ADS  CAS  Google Scholar 

  23. Y. Zha et al., Phys. Rev. B 54, 7561(1996).

    Article  ADS  CAS  Google Scholar 

  24. K. Yamada et al., Phys. Rev. B 57, 6165 (1998).

    Article  ADS  CAS  Google Scholar 

  25. V. Barzykin et al., Phys. Rev. B 50, 16052 (1994).

    Article  ADS  CAS  Google Scholar 

  26. M. Fujita et al., Phys.Rev. B 65, 0654505 (1991).

    Google Scholar 

  27. M.K. Crawford et al., Phys. Rev. B 44, 7749 (1991).

    Article  ADS  CAS  Google Scholar 

  28. J.M. Tranquada et al., Phys. Rev.Lett. 78, 338 (1997).

    Article  ADS  CAS  Google Scholar 

  29. J.M. Tranquada et al., Phys. Rev. B 54, 7489 (1996).

    Article  ADS  CAS  Google Scholar 

  30. J.M. Tranquada et al., Phys. Rev. B 59, 14712 (1999).

    Article  ADS  CAS  Google Scholar 

  31. B. Lake et al., Nature 415, 299 (2002).

    Article  ADS  CAS  Google Scholar 

  32. Ch. Niedermeier et al., Phys. Rev.Lett. 80, 3483 (1998).

    Article  Google Scholar 

  33. M.I. Salcola et al., Phys. Rev. Lett. 77, 155 (1996); R.S.Markiewicz et al., Phys. Rev. B 65, 064520 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gor’kov, L.P., Teitel’baum, G.B. (2005). Nuclear Spin Relaxation and Incommensurate Magnetism in Doped Cuprates. In: Ashkenazi, J., et al. New Challenges in Superconductivity: Experimental Advances and Emerging Theories. NATO Science Series II: Mathematics, Physics and Chemistry, vol 183. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3085-1_10

Download citation

Publish with us

Policies and ethics