Skip to main content

Assessing Sources and Transformations of Sulphate and Nitrate in the Hydrosphere Using Isotope Techniques

  • Chapter
Isotopes in the Water Cycle

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alewell, C., Mitchell, M. J., Likens, G. E., Krouse, H. R. (2000) Assessing the origin of sulphate deposition at the Hubbard Brook Experimental Forest. J. Environ. Qual. 29, 759–767.

    Article  CAS  Google Scholar 

  • Amberger, A. (1987) Natürliche 15N und 18O Gehalte als Indikatoren für die Herkunft von Nitrat in Boden und Grundwasser. PhD Thesis, Technical University Munich.

    Google Scholar 

  • Amberger, A., Schmidt, H. L. (1987) Natürliche Isotopengehalte von Nitrat als Indikatoren für dessen Herkunft. Geochim. Cosmochim. Acta 51, 2699–2705.

    Article  CAS  Google Scholar 

  • Aravena, R., Evans, M. L., Cherry, J. A. (1993) Stable isotopes of oxygen and nitrogen in source identification of nitrate from septic systems. Ground Water 31, 180–186.

    Article  CAS  Google Scholar 

  • Aravena, R., Robertson, W. D. (1998) Use of multiple isotope tracers to evaluate denitrification in ground water: study of nitrate from a large-flux septic system plume. Ground Water 36, 975–982.

    Article  CAS  Google Scholar 

  • Baertschi, P. (1976) Absolute 18O content of Standard Mean Ocean Water. Earth Planet. Sci. Lett. 31, 341–344.

    Article  CAS  Google Scholar 

  • Bailey, S. A., Smith, J. W. (1972) Improved method for the preparation of sulphur dioxide from barium sulphate for isotope ratio studies. Anal. Chem. 44, 1542–1543.

    CAS  Google Scholar 

  • Bao, H., Michalski, G. M., Thiemens, M. H. (2001a) Sulphate oxygen-17 anomalies in desert varnishes. Geochim. Cosmochim. Acta 65, 2029–2036.

    Article  CAS  Google Scholar 

  • Bao, H., Thiemens, M. H., Heine, K. (2001b) Oxygen-17 excesses of the central Namib gypcretes: spatial distribution. Earth Planet. Sci. Lett. 192, 125–135.

    Article  CAS  Google Scholar 

  • Barker, A. P., Newton, R. J., Bottrell, S. H., Tellam J. H. (1998) Processes affecting groundwater chemistry in a zone of saline intrusion into an urban sandstone aquifer. Appl. Geochem. 13, 735–749.

    Article  CAS  Google Scholar 

  • Barrie, A., Prosser, S. J. (1996) Automated analysis of light element stable isotopes by isotope ratio mass spectrometry. In Mass Spectrometry of Soils (T. W. Boutton, S. I. Yamasaki, Eds) Marcel Dekker, 1–46.

    Google Scholar 

  • Beaudoin, G., Taylor, B. E., Rumble III D., Thiemens, M. (1994) Variations in the sulphur isotope composition of troilite from Canyon Diablo iron meteorite. Geochim. Cosmochim. Acta 58, 4253–4255.

    CAS  Google Scholar 

  • Benkovitz, C. M., Scholtz, M. T., Pacyna, J., Tarrason L., Dignon, J., Voldner E. C., Spiro, P. A., Logan, J. A., Graedel, T. E. (1996) Global gridded inventories of anthropogenic emissions of sulphur and nitrogen. J. Geophys. Res. 101(D22), 29239–29253.

    Article  CAS  Google Scholar 

  • Böhlke, J. K., Mroczkowski, S. J., Coplen T. B. (2003) Oxygen isotopes in nitrate: new reference materials for 18O:17O:16O measurements and observations on nitrate-water equilibration. Rapid Commun. Mass Spectrom. 17, 1835–1846.

    Google Scholar 

  • Böttcher, J., Strebel, O., Voerkelius, S., Schmidt, H.-L. (1990) Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer. J. Hydrol. 114, 413–424.

    Google Scholar 

  • Bräuer, K., Strauch, G. (2000) An alternative procedure for the 18O measurement of nitrate oxygen. Chem. Geol. 168, 283–290.

    Google Scholar 

  • Bremner, J. M. (1965) Total nitrogen. Methods of Soil Analysis, Vol. Monograph 9 (C. A. Black et al., Eds) American Society of Agronomy, 1149–1178.

    Google Scholar 

  • Bremner, J. M., Keeney, D. R. (1965) Steam distillation methods for determination of ammonium, nitrate and nitrite. Anal. Chim. Acta 32, 485–495.

    Article  CAS  Google Scholar 

  • Brooks, P. D., Stark, J. M., McInteer, B. B., Preston, P. (1989) Diffusion method to prepare soil extracts for automated nitrogen-15 analysis. Soil Sci. Soc. Am. J. 53, 1707–1711.

    Article  CAS  Google Scholar 

  • Canfield, D. E. (2001) Isotope fractionation by natural populations of sulphate-reducing bacteria. Geochim. Cosmochim. Acta 65(7), 1117–1124.

    Article  CAS  Google Scholar 

  • Carmody, R. W., Plummer, L. N., Busenberg, E., Coplen, T. B. (1998) Methods for collection of dissolved sulphate and sulphide and analysis of their sulphur isotopic composition. U.S. Geological Survey Open-File Report No. 97-234.

    Google Scholar 

  • Caron, F., Tessier, A., Kramer, J. R., Schwarcz, H. P., Rees, C. E. (1986) Sulphur and oxygen isotopes of sulphur in precipitation and lakewater, Quebec, Canada. Appl. Geochem. 1, 601–606.

    Article  CAS  Google Scholar 

  • Casciotti, K. L., Sigman, D. M., Hastings, M., Böhlke, J. K., Hilkert, A. (2002) Measurement of the oxygen isotopic composition of nitrate in seawater amd freshwater using the denitrifier method. Anal. Chem. 74, 4905–4912.

    Article  CAS  Google Scholar 

  • Cey, E. E., Rudolph, D. L., Aravena, R., Parkin, G. (1999) Role of the riparian zone in controlling the distribution and fate of agricultural nitrogen near a small stream in southern Ontario. J. Contaminant Hydrol. 37, 45–67.

    Article  CAS  Google Scholar 

  • Chiba H., Sakai, H. (1985) Oxygen isotope exchange rate between dissolved sulphate and water at hydrothermal temperatures. Geochim. Cosmochim. Acta 49, 993–1000.

    Article  CAS  Google Scholar 

  • Chivas, A. R., Andrew, A. S., Lyons, W. B., Bird, M. I., Donelly, T. H. (1991) Isotopic constraints on the origin of salts in Australian playas. 1. Sulphur. Palaeogeography, Palaeoclimatology, Palaeoecology 84, 309–332.

    Article  Google Scholar 

  • Chukhrov, F. V., Churikov, V. S., Yermilova, L. P., Nosik L. P. (1975) On the variation of sulphur isotopic composition in some natural waters. Geochem. Int. 12(2), 20–33.

    Google Scholar 

  • Claypool, G. E., Holser W. T., Kaplan, I. R., Sakai H., Zak, I. (1980) The age curves of sulphur and oxygen isotopes in marine sulphate and their mutual interpretation. Chem. Geol. 28, 199–260.

    Article  CAS  Google Scholar 

  • Cline, J. D. Kaplan, I. R. (1975) Isotopic fractionation of dissolved nitrate during denitrification in the Eastern Tropical North Pacific Ocean. Marine Chemistry 3, 271–299.

    Article  CAS  Google Scholar 

  • Coleman, M. L. (2004) Data corrections for mass spectrometer analysis of SO2. In Handbook of Stable Isotope Analytical Techniques, Vol. 1 (P. de Groot, Ed.) Elsevier.

    Google Scholar 

  • Coleman, M. L., Moore, M. P. (1978) Direct reduction of sulphates to sulphur dioxide for isotopic analysis. Anal. Chem. 50, 1594–1595.

    Article  CAS  Google Scholar 

  • Coplen, T., Krouse, H. R. (1998) Sulphur isotope data consistency improved. Nature 392, 32.

    Article  CAS  Google Scholar 

  • Coplen, T. B., Hopple, J. A., Böhlke, J. K., Peiser, H. S., Rieder, S. E., Krouse, H. R., Rosman K. J. R., Ding, T., Vocke, R. D., Revesz, K. M., Lamberty, A., Taylor, P., De Bievre, P. (2002) Compilation of Minimum and Maximum Isotope Ratios of Selected Elements in Naturally Occurring Terrestrial materials and reagents. USGS Water-Resources Investigations Report 01-4222.

    Google Scholar 

  • Corteccci, G. (1978) Fractionation of sulphate oxygen and sulphur isotopes by marine sediment retention. In Stable Isotopes in Earth Science, Vol. 20 (B. W. Robinson, Ed.), pp. 49–50. DSIR Bulletin.

    Google Scholar 

  • Cortecci, G. Longinelli, A. (1970) Isotopic composition of sulphate in rain water, Pisa, Italy. Earth Plant. Sci. Lett. 8, 36–40.

    CAS  Google Scholar 

  • Dazy, J., Dray, M., Jusserand, C., Pasqualotto, M., Zuppi, G. M. (1987) Characterisation isotopique des eaux thermominerales des Alpes du nord Franco-Italiennes. Isotope Techniques in Water Resources Development. Proc. Symp. IAEA, Vienna, Austria, 3–24.

    Google Scholar 

  • Deevey E. S., Nakai N., Stuiver, M. (1963) Fractionation of sulphur and carbon isotopes in a meromictic lake. Science 139, 407–408.

    CAS  Google Scholar 

  • Durka, W., Schulze E.-D., Gebauer, G., Voerkelius, S. (1994) Effects of forest decline on uptake and leaching of deposited nitrate determined from 15N and 18O measurements. Nature 372, 765–767.

    Article  CAS  Google Scholar 

  • Edmunds, W. M., Smedley, P. L., Spiro, B. (1996) Controls on the geochemistry of sulphur in the East Midlands Triassic aquifer, United Kingdom. Isotope Techniques in Water Resources Development. Proc. Symp. IAEA, Vienna, 107–122.

    Google Scholar 

  • Edwards, A. P. (1973) Isotopic tracer techniques for identification of sources of nitrate pollution. J. Environ. Qual. 2, 382–387.

    Article  CAS  Google Scholar 

  • Feigin, A., Shearer, G., Kohl, D. H., Commoner, B. (1974) The amount and nitrogen-15 content of nitrate in soil profiles from two central Illinois fields in a corn-soybean rotation. Soil Sci. Soc. Amer. Proc. 38, 465–471.

    CAS  Google Scholar 

  • Fennell, J., Bentley, L. R. (1998) Distribution of sulphate and organic carbon in a prairie till setting: Natural versus industrial sources. Water Resour. Res. 34, 1781–1794.

    Article  CAS  Google Scholar 

  • Fontes, J. C., Zuppi, G. M. (1976) Isotopes and water chemistry in sulphide-bearing springs of central Italy. Interpretation of Environmental Isotope and Hydrochemical Data in Ground Water Hydrology, Proc. Advisory Group Meeting. IAEA, Vienna, Austria, 143–158.

    Google Scholar 

  • Fritz P., Basharmal, G. M., Drimmie, R. J., Ibsen J., Qureshi, R. M. (1989) Oxygen isotope exchange between sulphate and water during bacterial reduction of sulphate. Chem. Geol. 79, 99–105.

    Google Scholar 

  • Fritz P., Drimmie R. J., Nowicki V. K. (1974) Preparation of sulphur dioxide for mass spectrometer analyses by combustion of sulphides with copper oxide. Anal. Chem. 46, 164–166.

    CAS  Google Scholar 

  • Fritz, P., Lapcevic, P. A., Miles M. C., Frape, S. K., Lawson, D. E., O’shea, K. J. (1988) Stable isotopes in sulphate minerals from the Salina Formation in southwestern Ontario. Can. J. Earth Sci. 25, 195–205.

    CAS  Google Scholar 

  • Giesemann, A., Jäger, H. J., Norman, A.-L., Krouse, H. R., Brand, W. A. (1994) On-line sulphur-isotope determination using an elemental analyser coupled to a mass spectrometer. Anal. Chem. 66, 2816–2819.

    Article  CAS  Google Scholar 

  • Giggenbach, W., Gonfiantini, R., Panichi, C. (1983) Geothermal Systems. Guidebook on Nuclear Techniques in Hydrology 1983 Edition. IAEA, Vienna, Austria, 359–379.

    Google Scholar 

  • Gormly, J. R., Spalding, R. F. (1979) Sources and concentrations of nitrate-nitrogen in ground water of the Central Platte Region, Nebraska. Ground Water 17, 291–301.

    CAS  Google Scholar 

  • Governa, M. E., Lombardi S., Masciocco, L., Riba, M., Zuppi, G. M. (1989) Karst and geothermal water circulation in the central Apennines (Italy). Proceedings of an Advisory Group Meeting on Isotope Techniques in the Study of the Hydrology of Fractured and Fissued Rocks. IAEA, Vienna, 173–202.

    Google Scholar 

  • Grey, D. C., Jensen, M. L. (1972) Bacteriogenic sulphur in air pollution. Science 177, 1099–1100.

    CAS  Google Scholar 

  • Halas, S., Wolacewicz, W. P. (1981) Direct extraction of sulphur dioxide from sulphates for isotopic analysis. Anal. Chem. 53, 686–689.

    Google Scholar 

  • Harrison, A. G., Thode, H. G. (1958) Mechanisms of bacterial reduction of sulphate from isotope fractionation studies. Trans. Faraday Soc. 54, 84–92.

    CAS  Google Scholar 

  • Hauck, R. D., Bartholomew W. V., Bremner J. M., Broadbent, F. E., Cheng, H. H., Edwards, A. P., Keeney, D. R., Legg, J. O., Olsen, S. R., Porter, L. K. (1972) Use of variations in natural nitrogen isotope abundance for environmental studies: a questionable approach. Science 177, 453–454.

    CAS  Google Scholar 

  • Haur, A., Hladikova, J., Smejkal, V. (1973) Procedure of direct conversion of sulphates into SO2 for mass spectrometric analysis of sulphur. Isotopenpraxis 9, 329–331.

    CAS  Google Scholar 

  • Heaton, T. H. E. (1986) Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review. Chem. Geol. 5: 87–102.

    Google Scholar 

  • Hendry, M. J., Krouse H. R., Shakur, M. A. (1989) Interpretation of oxygen and sulphur isotopes from dissolved sulphates in tills of Southern Alberta, Canada. Water Resour. Res. 25, 567–572.

    CAS  Google Scholar 

  • Herut B., Spiro, B., Starinsky A., Katz, A. (1995) Sources of sulphur in rainwater as indicated by isotopic δ34S data and chemical composition, Israel. Atmos. Environ. 29(7), 851–857.

    Article  CAS  Google Scholar 

  • Hitchon, B., Krouse, H. R. (1972) Hydrogeochemistry of the surface waters of the Mackenzie River drainage basin, Canada-III. Stable isotopes of oxygen, carbon and sulphur. Geochim. Cosmochim. Acta 36, 1337–1357.

    CAS  Google Scholar 

  • Hoering, T. (1955) Variations of nitrogen-15 in abundance in naturally occurring substances. Science 122, 1233–1234.

    CAS  Google Scholar 

  • Hoering, T. (1957) The isotopic composition of the ammonia and the nitrate ion in rain. Geochim. Cosmochim. Acta 12, 97–102.

    Article  CAS  Google Scholar 

  • Hollocher, T. C. (1984) Source of the oxygen atoms of nitrate in the oxidation of nitrite by Nitrobacter agilis and evidence against a P-O-N anhydride mechanism in oxidative phosphorylation. Arch. Biochem. Biophys. 233, 721–727.

    Article  CAS  Google Scholar 

  • Holmes, R. M., McClelland, J. W., Sigman D. M., Fry, B., Peterson, B. J. (1998) Measuring 15N-NH4 + in marine, estuarine and freshwater: an adaption of the ammonia diffusion methods for samples with low ammonium concentration. Marine Chemistry 60, 2235–2243.

    Article  Google Scholar 

  • Holser, W. T., Kaplan, I. R. (1966) Isotope geochemistry of sedimentary sulphates. Chem. Geol. 1, 93–135.

    Article  CAS  Google Scholar 

  • Holt, B. D., Engelkemeir, A. G. (1970) Thermal decomposition of barium sulphate to sulphur dioxide for mass spectrometric analysis. Anal. Chem. 42, 1451–1453.

    Article  CAS  Google Scholar 

  • Holt, B. D., Kumar, R. (1991) Oxygen isotope fractionation for understanding the sulphur cycle. In Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment, SCOPE 43 (H. R. Krouse, V. A. Grinenko, Eds) Wiley & Sons, 55–64.

    Google Scholar 

  • Hübner, H. (1986) Isotope effects of nitrogen in the soil and biosphere. Handbook of Environmental Isotope Geochemistry: The Terrestrial Environment, Vol. 2 (P. Fritz, J.-Ch. Fontes, Eds) Elsevier, 361–425.

    Google Scholar 

  • Hulston, J. R., Thode, H. G. (1965) Variations in the S33, S34, and S36 contents of meteorites and their relation to chemical and nuclear effects. J. Geophys. Res. 70, 3475–3484.

    CAS  Google Scholar 

  • International Atomic Energy Agency (1995) Reference and intercomparison materials for stable isotopes of light elements. IAEA-TECDOC-825, Vienna.

    Google Scholar 

  • Jensen, M. L., Nakai, N. (1961) Sources and isotopic composition of atmospheric sulphur. Science 134, 2102–2104.

    CAS  Google Scholar 

  • Junk, G., Svec, H. J. (1958) The absolute abundance of the nitrogen isotopes in the atmosphere and compressed gas from various sources. Geochim. Cosmochim. Acta 14, 234–243.

    Article  CAS  Google Scholar 

  • Karr, J. D., Showers, W. J., Gilliam, J. W., Andres A. S. (2001) Tracing nitrate transport and environmental impact for intensive swine farming using delta nitrogen-15. J. Environ. Qual. 30, 1163–1175.

    Article  CAS  Google Scholar 

  • Kellman, L., Hillaire-Marcel, C. (1998) Nitrate cycling in streams: using natural abundances of NO3 −-δ15N to measure in-situ denitrification. Biogeochemistry 43, 273–292.

    Article  CAS  Google Scholar 

  • Kendall, C. (1998) Tracing nitrogen sources and cycling in catchments. Isotope Tracers in Catchment Hydrology (C. Kendall, J. J. McDonnell, Eds) Elsevier, 521–576.

    Google Scholar 

  • Kendall, C., Grim, E. (1990) Combustion tube method for measurement of nitrogen isotope ratios using calcium oxide for total removal of carbon dioxide and water. Anal. Chem. 62, 526–529.

    Article  CAS  Google Scholar 

  • Kohl, D. H., Shearer, G. B., Commoner, B. (1971) Fertilizer nitrogen: contribution to nitrate in surface water in a corn belt watershed. Science 174, 1331–1334.

    CAS  Google Scholar 

  • Kornexl, B. E., Gehre, M., Höfling, R., Werner, R. A. (1999) On-line δ18O measurement of organic and inorganic substances. Rapid Comm. Mass Spectrom. 13, 1685–1693.

    CAS  Google Scholar 

  • Kreitler, C. W. (1979) Nitrogen-isotope ratio studies of soils and groundwater nitrate from alluvial fan aquifers in Texas. J. Hydrol. 42, 147–170.

    Article  CAS  Google Scholar 

  • Kreitler, C. W., Browning, L. A. (1983) Nitrogen-isotope analysis of groundwater nitrate in carbonate aquifers: natural sources versus human pollution. J. Hydrol. 61, 285–301.

    Article  CAS  Google Scholar 

  • Kreitler, C. W., Jones, D. C. (1975) Natural soil nitrate: the cause of the nitrate contamination of ground water in Runnels County, Texas. Ground Water 13, 53–61.

    Google Scholar 

  • Lehmann, M. F., Bernasconi, S. M., McKenzie, J. A. (2001) A simple method for the extraction of ammonium from freshwaters for nitrogen isotope analysis. Anal. Chem. 73, 4717–4721.

    Article  CAS  Google Scholar 

  • Lein A. Y. (1991) Flux of volcanic sulphur to the atmosphere and isotopic composition of total sulphur. In Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment, SCOPE 43 (H. R. Krouse, V. A. Grinenko, Eds) Wiley & Sons, 116–125.

    Google Scholar 

  • Letolle, R. (1980) Nitrogen-15 in the natural environment. Handbook of Environmental Isotope Geochemistry: The Terrestrial Environment, Vol. 1 (P. Fritz, J.-Ch. Fontes, Eds) Elsevier, 407–433.

    Google Scholar 

  • Li W., Ni, B., Jin, D., Chang, T. L. (1988) Measurement of the aboslute abundance of oxygen-17 in VSMOW. Kexue Tongbao 33, 1610–1613.

    CAS  Google Scholar 

  • Lloyd R. M. (1967) Oxygen-18 composition of oceanic sulphate. Science 156, 1228–1231.

    CAS  Google Scholar 

  • Longinelli, A., Corteccci, G. (1970) Isotopic abundance of oxygen and sulphur in sulphate ions from river water. Earth Planet. Sci. Lett. 7, 376–380.

    Article  CAS  Google Scholar 

  • Longinelli, A., Craig, H. (1967) Oxygen-18 variations in sulphate ions in sea water and saline lakes. Science 156, 56–59.

    CAS  Google Scholar 

  • MacNamara, J., Thode, H. G. (1950) Comparison of the isotopic composition of terrestrial and meteoritic sulphur. Phys. Rev. 78, 307–308.

    CAS  Google Scholar 

  • Mariotti, A. (1983) Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements. Nature 303, 685–687.

    Article  CAS  Google Scholar 

  • Mariotti, A. (1984) Utilisation des variations naturelles d’abondance isotopique en 15N pour tracer l’origine des pollutions des aquifers par les nitrates. Isotope Hydrology 1983. Proc. Symp. IAEA, Vienna, 605–633.

    Google Scholar 

  • Mariotti A., Germon, J. C., Hubert, P., Kaiser, P., Letolle, R., Tardieux, A., Tardieux, P. (1981) Experimental determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and nitrification processes. Plant and Soil 62, 413–430.

    CAS  Google Scholar 

  • Mariotti, A., Germon, J. C., Leclerc, A. (1982) Nitrogen isotope fractionation associated with the NO2 −-N2O step of denitrification in soils. Can. J. Soil Sci. 62, 227–241.

    CAS  Google Scholar 

  • Mariotti, A., Landreau, A., Simon, B. (1988) 15N isotope biogeochemistry and natural denitrification process in ground water: application to the chalk aquifer in northern France. Geochim. Cosmochim. Acta 52, 1869–1878.

    Article  CAS  Google Scholar 

  • Matrosov, A. G., Chebotarev, Y. N., Kudryavtseva, A. J., Zyukun, A. M., Ivanov, M. V. (1975) Sulphur isotope composition in freshwater lakes containing H2S. Geochem. Int. 1975, 217–221.

    Google Scholar 

  • Mayer, B., Bollwerk, S. M., Mansfeldt, T., Hütter, B., Veizer, J. (2001) The oxygen isotope composition of nitrate generated by nitrification in acid forest floors. Geochim. Cosmochim. Acta 65(16), 2743–2756.

    Article  CAS  Google Scholar 

  • Mayer, B., Feger, K. H., Giesemann, A., Jäger, H.-J. (1995) Interpretation of sulphur cycling in two catchments in the Black Forest (Germany) using stable sulphur and oxygen isotope data. Biogeochem. 30, 31–58.

    Article  CAS  Google Scholar 

  • Mayer, B., Krouse, H. R. (2004) Procedures for sulphur isotope abundance studies. In Handbook of Stable Isotope Analytical Techniques, Vol. 1 (P. de Groot, Ed.) Elsevier.

    Google Scholar 

  • Mengis, M., Schiff S. L., Harris, M., English, M. C., Aravena, R., Elgood, R. J., MacLean, A. (1999) Multiple geochemical and isotopic approaches for assessing ground water NO3 − elimination in a riparian zone. Ground Water 37, 448–457.

    Article  CAS  Google Scholar 

  • Mengis, M., Walther, U., Bernasconi, S. M., Wehrli, B. (2001) Limitations of using δ18O for the source identification of nitrate in agricultural soils. Environ. Sci. Technol. 35(9), 1840–1844.

    Article  CAS  Google Scholar 

  • Michalski, G., Savarino, J., Böhlke, J. K., Thiemens, M. (2002) Determination of the total oxygen isotopic composition of nitrate and the calibration of a Δ17O nitrate reference material. Anal. Chem. 74, 4989–4993.

    Article  CAS  Google Scholar 

  • Migdisov, A. A., Ronov, A. B., Grinenko, V. A. (1983) The sulphur cycle in the lithosphere. The Global Biogeochemical Sulphur Cycle, SCOPE 19 (M. V. Ivanov, R. Freney, Eds) John Wiley & Sons, 25–95.

    Google Scholar 

  • Mizutani, Y., Rafter, T. A. (1969a) Oxygen isotopic composition of sulphates: Part 4. Bacterial fractionation of oxygen isotopes in reduction of sulphate and in the oxidation of sulphur. N. Z. J. Sci. 12, 60–68.

    CAS  Google Scholar 

  • Mizutani, Y., Rafter, T. A. (1973) Isotopic behaviour of sulphate oxygen in the bacterial reduction of sulphate. Geochem. J. 6, 183–191.

    CAS  Google Scholar 

  • Mizutani Y., Rafter, T. S. (1969b) Isotopic composition of sulphate in rain water, Gracefield, New Zealand. N. Z. J. Sci. 12, 69–80.

    CAS  Google Scholar 

  • Moerth, C.-M., Torssander, P. (1995) Sulphur and oxygen isotope ratios in sulphate during an acidification reversal study at Lake Garsjon, Western Sweden. Water Air Soil Pollut. 79, 261–278.

    CAS  Google Scholar 

  • Müller, G., Nielsen, H., Ricke, W. (1966) Sulphur isotope abundance in formation waters and evaporites from northern and southern Germany. Chem. Geol. 1, 211–220.

    Google Scholar 

  • Nakai N., Jensen, M. L. (1967) Sources of atmospheric sulphur compounds. Geochem. J. 1, 199–210.

    CAS  Google Scholar 

  • Nielsen, H. (1974) Isotopic composition of the major contributors to the atmospheric sulphur. Tellus 26, 213–221.

    CAS  Google Scholar 

  • Nriagu, J. O. (1974) Fractionation of sulphur isotopes by sediment adsorption of sulphate. Earth Planet. Sci. Lett. 22, 366–370.

    Article  CAS  Google Scholar 

  • Nriagu, J. O., Coker, R. D. (1978) Isotopic composition of sulphur in precipitation within the Great Lakes Basin. Tellus 30, 365–375.

    Article  CAS  Google Scholar 

  • Östlund, G. (1957) Isotopic composition of sulphur in precipitation and sea-water. Tellus 11, 478–480.

    Google Scholar 

  • Panichi C., Gonfiantini, R. (1981) Geothermal Waters. Stable Isotope Hydrology: Deuterium and Oxygen-18 in the Water Cycle. IAEA, Vienna, 241–271.

    Google Scholar 

  • Pichlmayer, F., Blochberger, K. (1988) Isotopenhäufigkeitsanalyse von Kohlenstoff, Stickstoff und Schwefel mittels Gerätekopplung Elementaranalysator-Massenspektrometer. Fresenius Z. Anal. Chem. 331, 1961–1201.

    Article  Google Scholar 

  • Price, F. T., Shieh, Y. N. (1979) The distribution and isotopic composition of sulphur in coals from the Illinois Basin. Econ. Geol. 74, 1445–1461.

    Article  CAS  Google Scholar 

  • Puchelt, H., Sabels, B. R., Hoering, T. C. (1971) Preparation of sulphur hexafluoride for isotope geochemical analysis. Geochim. Cosmochim. Acta 35, 625–628.

    Article  CAS  Google Scholar 

  • Rafter, T. A. (1967) Oxygen isotopic composition of sulphates. N. Z. J. Sci. 10, 493–510.

    CAS  Google Scholar 

  • Rafter, T. A., Mizutani, Y. (1967) Oxygen isotopic composition of sulphate, 2. Preliminary results on oxygen isotopic variation in sulphates and the relationship to their environment and their δ34S values. N. Z. J. Sci. 10, 816–840.

    CAS  Google Scholar 

  • Rees, C. E. (1978) Sulphur isotope measurements using SO2 and SF6. Geochim. Cosmochim. Acta 42, 383–389.

    CAS  Google Scholar 

  • Rees, C. E., Holt, B. D. (1991) The isotopic analysis of sulphur and oxygen. In Stable Isotopes in the Assessment of Natural and Anthropogenic Sulphur in the Environment, SCOPE 43 (H. R. Krouse, V. A. Grinenko, Eds) John Wiley & Sons, 43–64.

    Google Scholar 

  • Rees, C. E., Jenkins, W. J., Monster, J. (1978) The sulphur isotopic composition of ocean water sulphate. Geochim. Cosmochim. Acta 42, 377–381.

    CAS  Google Scholar 

  • Revesz, K., Böhlke, J. K. (2002) Comparison of δ18O measurements in nitrate by different combustion techniques. Anal. Chem. 74, 5410–5413.

    Article  CAS  Google Scholar 

  • Revesz, K., Böhlke, J. K., Yoshinari, T. (1997) Determination of δ18O and δ15N in nitrate. Anal. Chem. 69, 4375–4380.

    Article  CAS  Google Scholar 

  • Ricke, W. (1964) Präparation von Schwefeldioxid zur massenspektrometrischen Bestimmung des SIsotopenverhältnisses in natürlichen S-Verbindungen. Zeitschrift für Analytische Chemie 199, 401–413.

    CAS  Google Scholar 

  • Rightmire, C. T., Pearson, F. J., Back, W., Rye, R. O., Hanshaw, B. B. (1974) Distribution of sulphur isotopes of sulphates in ground waters from the principal artesian aquifer of Florida and the Edwards aquifer of Texas, United States of America. Isotope Techniques in Ground Water Hydrology. IAEA, Vienna, 191–207.

    Google Scholar 

  • Robertson, W. D., Cherry, J. A., Schiff, S. L. (1989) Atmospheric sulphur deposition 1950–1985 inferred from sulphate in groundwater. Water Resour. Res. 25, 1111–1123.

    CAS  Google Scholar 

  • Robinson, B. W. (1973) Sulphur isotope equilibrium during sulphur hydrolysis at high temperatures. Earth Planet. Sci. Lett. 18, 443–450.

    Article  CAS  Google Scholar 

  • Robinson B. W., Kusakabe, M. (1975) Quantitative preparation of sulphur dioxide for 34S/32S analyses from sulphides by combustion with cuprous oxide. Anal. Chem. 47, 1179–1181.

    Article  CAS  Google Scholar 

  • Rock, L., Mayer, B. (2004) Isotopic assessment of sources of surface water nitrate within the Oldman River basin, Southern Alberta, Canada. Water Air Soil Pollut. Focus 4, 542–562.

    Article  Google Scholar 

  • Rosman, K. J. R., Taylor, P. D. P. (1998) Isotopic composition of the elements 1997. Pure Appl. Chem. 70, 217–235.

    Article  CAS  Google Scholar 

  • Sakai, H. (1968) Isotopic properties of sulphur compounds in hydrothermal processes. Geochem. J. 2, 29–49.

    CAS  Google Scholar 

  • Shanley, J. B., Mayer, B., Mitchell, M. J., Michel, R. L., Bailey, S. W., Kendall, C. (in review) Differentiating atmospheric and mineral sources of sulphur during snowmelt using 35S activity, 34S and 18O of sulphate, and 18O of water as tracers. Biogeochemistry.

    Google Scholar 

  • Sigman, D. M., Altabet, M. A., Michener, R. H., McCorkle, D. D., Fry, B., Holmes, R. M. (1997) Natural abundance level measurement of the nitrogen isotopic composition of oceanic nitrate: an adaption of the ammonium diffusion method. Marine Chemistry 57, 227–242.

    Article  CAS  Google Scholar 

  • Sigman, D. M., Casciotti, K. L., Andreani, M., Barford, C., Galanter, M., Böhlke, J. K. (2001) A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal. Chem. 73, 4145–4153.

    CAS  Google Scholar 

  • Silva, S. R., Kendall, C., Wilkinson, D. H., Ziegler, A. C., Chang, C. C. Y., Avanzino, R. J. (2000) A new method for collection of nitrate from fresh water and the analysis of nitrogen and oxygen isotope ratios. J. Hydrol. 228, 22–36.

    Article  CAS  Google Scholar 

  • Sorenson, P., Jensen, E. S. (1991) Sequential diffusion of ammonium and nitrate from soil extracts to a polytetrafluorethylene trap for 15N determination. Analytica Chimica Acta 252, 201–203.

    Google Scholar 

  • Spence, M. J., Bottrell, S. H., Thornton, S. F., Lerner, D. N. (2001) Isotopic modelling of the significance of bacterial sulphate reduction for phenol attenuation in a contaminated aquifer. J. Contaminant Hydrol. 53, 285–304.

    CAS  Google Scholar 

  • Stark, J. M., Hart, S. C. (1996) Diffusion technique for preparing salt solutions, Kjeldahl digests, and persulphate digests for nitrogen-15 analysis. Soil Sci. Soc. Am. J. 60, 1846–1855.

    Article  CAS  Google Scholar 

  • Strauss, H. (1997) The isotopic composition of sedimentary sulphur through time. Palaeogeography, Palaeoclimatology, Palaeoecology 132, 97–118.

    Article  Google Scholar 

  • Strauss, H. (1999) Geological evolution from isotope proxy signals-Sulphur. Chemical Geology 161, 89–101.

    Article  CAS  Google Scholar 

  • Strebel, O., Böttcher, J., Fritz, P. (1990) Use of isotope fractionation of sulphate-sulphur and sulphateoxygen to assess bacterial desulphurication in a sandy aquifer. J. Hydrol. 121, 155–172.

    Article  CAS  Google Scholar 

  • Sueker, J. K., Turk, J. T., Michel, R. L. (1999) Use of cosmogenic S-35 for comparing ages of water from three alpine-subalpine basins in the Colorado Front Range. Geomorphology 27, 61–74.

    Article  Google Scholar 

  • Szaran, J., Niezgoda, H., Halas, S. (1998) New determination of oxygen and sulphur isotope fractionation between gypsum and dissolved sulphate. RMZ-Materials and Geoenvironment 45, 180–182.

    Google Scholar 

  • Taylor, B. E., Wheeler, M. C. (1994) Sulphur-and oxygen-isotope geochemistry of acid mine drainage in the Western United States: Field and experimental studies revisited. In Environmental Geochemistry of Sulphide Oxidation, Vol. 550, ACS Symposium Series (C. N. Alpers, D. W. Blowes, Eds) Amer. Chem. Soc., 481–514.

    Google Scholar 

  • Taylor, B. E., Wheeler, M. C., Nordstrom, D. K. (1984) Isotope composition of sulphate in acid mine drainage as measure of bacterial oxidation. Nature 308, 538–541.

    Article  CAS  Google Scholar 

  • Thode, H., Macnamara, J., Collins, C. B. (1949) Natural variations in the isotopic content of sulphur and their significance. Can. J. Res. 27, 361–373.

    CAS  Google Scholar 

  • Thode, H. G., Rees, C. E. (1971) Measurements of sulphur concentrations and the isotope ratios 33S/32S, 34S/32S and 36S/32S in Apollo 12 samples. Earth Planet. Sci. Lett. 12, 434–438.

    Article  CAS  Google Scholar 

  • Trust, B. A., Fry, B. (1992) Stable sulphur isotopes in plants: a review. Plant, Cell and Environment 15, 1105–1110.

    CAS  Google Scholar 

  • Ueda, A., Krouse, H. R. (1986) Direct conversion of sulphide and sulphate minerals to SO2 for isotope analyses. Geochem. J. 20, 209–212.

    CAS  Google Scholar 

  • Van Stempvoort, D. R., Krouse, H. R. (1994) Controls of δ18O in sulphate: Review of experimental data and application to specific environments. Environmental Geochemistry of Sulphide Oxidation, Vol. 550 (C. N. Alpers, D. W. Blowes, Eds) Amer. Chem. Soc., 446–480.

    Google Scholar 

  • Van Stempvoort, D. R., Reardon, E. J., Fritz, P. (1990) Fractionation of sulphur and oxygen isotopes in sulphate by soil sorption. Geochim. Cosmochim. Acta 54, 2817–2826.

    Google Scholar 

  • Velinsky, D. J., Pennock, J. R., Sharp, J. H., Cifuentes, L. A., Fogel, M. L. (1989) Determination of the isotopic composition of ammonium-nitrogen at the natural abundance level from estuarine waters. Marine Chemistry 26, 351–361.

    Article  CAS  Google Scholar 

  • Voerkelius, S. (1990) Isotopendiskriminierungen bei der Nitrifikation und Denitrifikation: Grundlagen und Anwendungen der Herkunfts-Zuordnung von Nitrat und Distickstoffmonoxid. PhD thesis, TU Munich, Munich, Germany.

    Google Scholar 

  • Wadleigh, M. A., Schwarcz, H. P., Kramer, J. R. (1994) Sulphur isotope tests of seasalt correction factors in precipitation: Nova Scotia, Canada. Water Air Soil Pollut. 77, 1–16.

    CAS  Google Scholar 

  • Wadleigh, M. A., Schwarcz, H. P., Kramer, J. R. (1996) Isotopic evidence for the origin of sulphate in coastal rain. Tellus 48B, 44–59.

    CAS  Google Scholar 

  • Wakshal, E., Nielsen, H. (1982) Variations of δ34S(SO4), δ18O(H2O) and Cl/SO4 ratio in rainwater over northern Israel, from the Mediterranean coast to Jordan Rift Valley and Golan Heights. Earth Planet. Sci. Lett. 61, 272–282.

    Article  CAS  Google Scholar 

  • Wassenaar, L. I. (1995) Evaluation of the origin and fate of nitrate in the Abbotsford Aquifer using the isotopes of 15N and 18O in NO3 −. Appl. Geochem. 10, 391–405.

    Article  CAS  Google Scholar 

  • Wellman, R. P., Cook, F. D., Krouse, H. R. (1968) Nitrogen-15: Microbiological alteration of abundance. Science 161, 269–270.

    CAS  Google Scholar 

  • Yanagisawa F., Sakai H. (1983) Thermal decomposition of barium sulphate-vanadium pentaoxide-silica glass mixtures for preparation of sulphur dioxide in sulphur isotope measurements. Anal. Chem. 55, 985–987.

    Article  CAS  Google Scholar 

  • Zuppi, G. M., Fontes, J.-Ch., Letolle, R. (1974) Isotopes du milieu et circulations d’eaux sulphurées dans le Latinum. Isotope Techniques in Groundwater Hydrology. IAEA, Vienna, 341–361.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 IEA

About this chapter

Cite this chapter

Mayer, B. (2005). Assessing Sources and Transformations of Sulphate and Nitrate in the Hydrosphere Using Isotope Techniques. In: Aggarwal, P.K., Gat, J.R., Froehlich, K.F. (eds) Isotopes in the Water Cycle. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3023-1_6

Download citation

Publish with us

Policies and ethics