Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, M.C. (1995) Vapour, liquid, and two-phase tracers for geothermal systems. World Geothermal Congress, 1875–1880.

    Google Scholar 

  • Adams, M.C., Beall, J.J., Hirtz, P., Koenig, B.A., Smith, J.L.B. (1999) Tracing effluent injection into the SE Geysers — A progress report. Geothermal Resources Council Transactions 23, 341–345.

    Google Scholar 

  • Allen, E.T., Day, A.L. (1935) Hot Springs of the Yellowstone Park. Carnegie Institute of Washington Publication Number 466, 525.

    Google Scholar 

  • Allen, E.T., Day, A.L. (1927) Steam Wells and Other Thermal Activity at the Geysers. California.Carnegie Institute of Washington, Publication Number 378.

    Google Scholar 

  • Andrews, J.N., Edmunds, W.M., Smedley, P.L., Fontes, J.C., Fifield, L.K., Allan, G.L. (1994) Chlorine-36 in groundwater as a palaeoclimatic indicator; the East Midlands Triassic sandstone aquifer (UK). Earth Planet. Sci. Lett. 122, 159–171.

    Article  CAS  Google Scholar 

  • Arnorsson, S. (1992) Geochemistry and geothermal resources in Iceland. Applications of Geochemistry in Geothermal Reservoir Development (F. D’Amore, coordinator) UNITAR/UNDP Centre on Small Energy Resources, Rome, Italy, 145–196.

    Google Scholar 

  • Arnorsson, S. (1987) Gas chemistry of the Krisuvik geothermal field, Iceland, with special reference to evaluation of steam condensation in upflow zones. Jokull 37, 32–47.

    Google Scholar 

  • Arnorsson, S., Gunnlaugsson, E. (1985) New gas geothermometers for geothermal exploration — Calibration and application. Geochimica et Cosmochimica Acta 49, 1307–1325.

    CAS  Google Scholar 

  • Ball, J.W., Nordstrom, D.K., Jenne, E.A., Vivit, D.V. (1998) Chemical Analysis of Hot Springs, Pools, Geysers, and Surface Waters from Yellowstone National Park, Wyoming, nd Vicinity, 1974–1975. U.S. Geological Survey Open-File Report 98-182, 45.

    Google Scholar 

  • Bethke, C.M., Zhao, X., Torgersen, T.J. (1999) Groundwater flow and the 4He distribution in the Great Artesian Basin of Australia. Journal of Geophysical Research (B) 104, 12,999–13,011.

    Google Scholar 

  • Bethke, C.M., Torgersen, T., Park, J. (2000) The “age” of very old groundwater; insights from reactive transport models. Journal of Geochemical Exploration 69–70, 1–4.

    Google Scholar 

  • Brown, R.M. (1961) Hydrology of tritium in the Ottawa Valley. Geochimica et Cosmochimica Acta 21, 199–216.

    CAS  Google Scholar 

  • Bryant, E.A. (1997) Climate Processes and Change. Cambridge University Press, Cambridge, United Kingdom, 209.

    Google Scholar 

  • Bullen, T.D., Kharaka, Y.K. (1992) Isotopic composition of Sr, Nd and Li in thermal waters from the Norris-Mammoth corridor, Yellowstone National Park and surrounding region. Water-Rock Interaction (Proc. 7th Int. Symp., Y.K Kharak., A.S. Maest, Eds) A.A. Balkema, Rotterdam, 897–901.

    Google Scholar 

  • Carothers, W.W., Adami, L.H., Rosenbauer, R J. (1988) Experimental oxygen isotope fractionation between siderite-water and phosphoric acid liberated CO2-siderite. Geochimica et Cosmochimica Acta 52, 2445–2450.

    Article  CAS  Google Scholar 

  • Chiba, H., Kusakabe, M., Hirano, S., Matsuo, S., Somiya, S. (1981) Oxygen isotope fractionation factors between anhydrite and water from 100°C to 550°C. Earth Planet. Sci. Lett. 53, 55–62.

    Article  CAS  Google Scholar 

  • Christiansen, R.L. (2001) The Quaternary and Pliocene Yellowstone Plateau Volcanic Field of Wyoming, Idaho, and Montana. U.S. Geological Survey Professional Paper 729-G, G1–G145.

    Google Scholar 

  • Clark, I., Fritz, P. (1997) Environmental Isotopes in Hydrogeology. C.R.C. Press, Boca Raton, Florida; 328.

    Google Scholar 

  • Clark, J.F., Turekian, K.K. (1990) Time scale of hydrothermal water-rock interactions in Yellowstone National Park based on radium isotopes and radon. Journal of Volcanology and Geothermal Resources 40, 169–180.

    Google Scholar 

  • Clayton, R.N., Friedman, I., Graff, D.L., Mayeda, T.K., Meents, W.F., Shimp, N.F. (1966) The origin of saline formation waters, 1. Isotopic composition. Journal of Geophysical Research 71, 3869–3822.

    CAS  Google Scholar 

  • Cole, D.R. (1985) A preliminary evaluation of oxygen isotopic exchange between chlorite and water. Geological Society of America Abstracts with Programs 17, 550.

    Google Scholar 

  • Coplen, T.B., Kendall, C., Hopple, J. (1983) Comparison of isotope reference samples. Nature 302, 236–238.

    Article  CAS  Google Scholar 

  • Craig, H. (1963) The isotope geochemistry of water and carbon in geothermal areas. Nuclear Geology on Geothermal Areas, Spoleto, 1963 (E Tongiorgi, Ed.) Consiglio Nazionale delle Ricerche, Laboratorio di Geologic Nucleare, Pisa, 17–53.

    Google Scholar 

  • Craig, H. (1961) Isotopic variations in meteoric waters. Science 133, 1702–1703.

    CAS  Google Scholar 

  • Craig, H., Boato, G., White, D.E. (1956) Isotope geochemistry of thermal waters. National Research Council Publication 400, 29–38.

    Google Scholar 

  • D’Amore F. (1992) Gas geochemistry as a link between geothermal exploration and exploitation. Application of Geochemistry in Geothermal Reservoirs Development (F. D’Amore, Coordinator) UNITAR/UNDP; 93–118.

    Google Scholar 

  • D’Amore, F., Panichi C. (1980) Evaluation of deep temperatures in hydrothermal systems by a new gas geothermometer. Geochimica et Cosmochimica Acta 44, 549–556.

    Article  CAS  Google Scholar 

  • Dansgaard, W. (1964) Stable isotopes in precipitation. Tellus 16, 436–468.

    Article  Google Scholar 

  • Duffield, W.A., Sass, J.H., Sorey, M.L. (1994) Tapping the Earth’s Natural Heat. U.S. Geological Survey Circular 1125, 63.

    Google Scholar 

  • Dutton, S.P., Land, L.S. (1985) Meteoric burial diagenesis of Pennsylvanian arkosic sandstones, southwestern Anadarko Basin, Texas. American Association of Petroleum Geologists Bull. 69, 22–38.

    Google Scholar 

  • Ellis, A.J., Mahon, W.A.J. (1977) Geochemistry and Geothermal Systems. Academic Press, New York; 392.

    Google Scholar 

  • Epstein, S., Mayeda, T.K. (1953) Variations of the 18O/16O ratio in natural waters. Geochemica et Cosmochimica Acta 4, 213.

    Article  CAS  Google Scholar 

  • Fabryka-Martin, J. (2000) Iodine-129 as a groundwater tracer. Environmental Tracers in Subsurface Hydrogeology (P. Cook, A.L. Herczed, Eds) Kluwer Academic Publishers, Boston; 504–510.

    Google Scholar 

  • Fournier, R.O. (1989) Geochemistry and dynamics of the Yellowstone National Park hydrothermal system. Ann. Rev. Earth Planet. Sci. Lett. 17, 13–53.

    CAS  Google Scholar 

  • Fournier, R.O., White, D.E., Truesdell, A.H. (1976) Convective heat flow in Yellowstone National Park. Development and Use of Geothermal Resources (Proc. 2nd United Nations Symp.) 731–739.

    Google Scholar 

  • Fournier, R.O., White, D.E., Truesdell, A.H. (1974) Geochemical indicators of subsurface temperature, I. Basic assumptions. U.S. Geological Survey Journal of Research 2, 259–262.

    Google Scholar 

  • Fridleifsson, I. (1998) Geothermal Direct Use Around the World. Geothermal Resources Council Bulletin 27, 8.

    Google Scholar 

  • Fridleifsson, I.B. (1998) Direct use of geothermal energy around the world. Oregon Institute of Technology Geo-Heat Center Quarterly Bulletin 19,4, 4–9.

    Google Scholar 

  • Friedman, I., Norton, D.R. (2002) Is Yellowstone Losing its Steam, Chloride Flux out of Yellowstone National Park. Report to Yellowstone National Park, 57.

    Google Scholar 

  • Friedman, I., Norton, D.R. (2000) Data used for calculating chloride flux out of Yellowstone National Park for the water years 1983–1999. U.S. Geological Survey Open-File Report OF 00-0194, 48.

    Google Scholar 

  • Friedman, I., O’Neil, J.R. (1977) Compilation of stable isotope fractionation factors of geochemical interest. Data of Geochemistry, sixth edition. U.S. Geological Survey Professional Paper 440-KK., 12 p. + figures.

    Google Scholar 

  • Friedman, I. (1953) Deuterium content of natural waters and other substances. Geochemica et Cosmochimica Acta 4, 89–103.

    Article  CAS  Google Scholar 

  • Froehlich, K. et al. (1991) Application of isotopic methods to dating of very old groundwaters; Milk River Aquifer, Alberta, Canada. Applied Geochemistry 6, 465–472.

    CAS  Google Scholar 

  • Gat, J.R. (1980) The isotopes of hydrogen and oxygen in precipitation. Handbook of Environmental Isotope Geochemistry, 1. The Terrestrial Environment. (P. Fritz, J.-Ch. Fontes, Eds) A. Elsevier, Amsterdam, 21–48.

    Google Scholar 

  • Gat, J.R., Carmi, I. (1970) Evolution of isotopic composition of atmospheric waters in the Mediterranean Sea area. Journal of Geophysical Research 75, 3039–3048.

    CAS  Google Scholar 

  • Giggenbach, W.F. (1992) Isotopic composition of water and steam discharges. In Application of Geochemistry in Geothermal Reservoirs Development (D’Amore F., Coordinator). UNITAR/UNDP; 253–273.

    Google Scholar 

  • Giggenbach, W.F. (1980) Geothermal gas equilibria. Geochimica et Cosmochimica Acta 44, 2021–2032.

    Article  CAS  Google Scholar 

  • Glover, R.B., Kim, J.P. (1993) SF6 — a new nonradioactive geothermal tracer. Fifteenth New Zealand Geothermal Workshop 15, 121–132.

    Google Scholar 

  • Henley, R.W., Truesdell, A.H., Barton, P.B. (1984) Fluid-mineral equilibria in hydrothermal systems. Reviews in Economic Geology 1, 267.

    Google Scholar 

  • Hearn, E.H., Kennedy, B.M., Truesdell, A.H. (1990) Coupled variations in helium isotopes and fluid chemistry, Shoshone Geyser Basin, Yellowstone National Park. Geochimica et Cosmochimica Acta 54, 3103–3113.

    Article  CAS  Google Scholar 

  • Hildreth, W., Halliday, A.N., Christiansen, R.L. (1991) Isotopic and chemical evidence concerning the genesis and contamination of basaltic and rhyolitic magma beneath the Yellowstone Plateau volcanic field. Journal of Petrology 32, 63–138.

    CAS  Google Scholar 

  • Ingebritsen, S.E., Galloway, D.L., Colvard, E.M., Sorey, M.L., Mariner, R.H. (2001) Time-variation of hydrothermal discharge at selected sites in the western United States, implications for monitoring. Journal of Volcanology and Geothermal Resources 111, 1–23.

    CAS  Google Scholar 

  • Kennedy, B.M., Lynch, M.A., Reynolds, J.H., Smith, S.P. (1985) Intensive sampling of noble gases in fluids at Yellowstone, I., Early overview of data; regional patterns. Geochimica et Cosmochimica Acta 49, 1251–1261.

    Article  CAS  Google Scholar 

  • Kharaka, Y.K., Carothers, W.W. (1986) Oxygen and hydrogen stable isotope geochemistry of deep basin brines. Handbook of Environmental Isotope Geochemistry. 2 (P. Fritz, J-Ch. Fontes, Eds) Elsevier, Amsterdam, 305–360.

    Google Scholar 

  • Kharaka, Y.K., Mariner, R.H. (1989) Chemical geothermometers and their application to formation waters from sedimentary basins. Thermal History of Sedimentary Basins (N..D Naeser, T.H. McCulloh, Eds) Springer-Verlag, Berlin; 99–117.

    Google Scholar 

  • Kharaka, Y.K., Mariner, R.H., Ambats G., Evans, W.C., White, L.D., Bullen, T.D., Kennedy, B.M. (1990) Origin of water and solutes in and north of the Norris-Mammoth corridor, Yellowstone National Park. Geothermal Resources Council Transactions 14, 705–714.

    CAS  Google Scholar 

  • Kharaka, Y.K., Mariner, R.H., Bullen, T.D., Kennedy, B.M., Sturchio, N.C. (1991) Geochemical investigations of hydraulic connections between the Corwin Springs Known Geothermal Resources Area and adjacent parts of Yellowstone National Park. Effects of Potential Geothermal Development in the Corwin Springs Known Geothermal Resources Area, Montana, on the Thermal Features of Yellowstone National Park (M.L. Sorey, Ed.) U.S. Geological Survey Water Resources Investigations Report 91-4052, Fl–F38E.

    Google Scholar 

  • Kharaka, Y.K., Mariner, R.H., Evans, W.C., Kennedy, B.M. (1992) Composition of gases from the Norris-Mammoth corridor, Yellowstone National Park, U.S.A, Evidence for a magmatic source near Mammoth Hot Springs. Water-Rock Interaction (Proc. 7th Int. Symp., Y.K. Kharaka, A.S. Maest, Eds) A.A. Balkema, Rotterdam, 1303–1307.

    Google Scholar 

  • Kharaka, Y.K., Sorey, M.L., Thordsen, J.J. (2000) Large-scale hydrothermal fluid discharges in the Norris-Mammoth corridor, Yellowstone National Park, U.S.A. Journal of Geochemical Exploration 69–70, 201–205.

    Google Scholar 

  • Kharaka, Y.K., Thordsen, J.J. (1992) Stable isotope geochemistry and origin of water in sedimentary basins. Isotope Signatures and Sedimentary Records (N. Clauer, S. Chaudhuri, Eds) Springer-Verlag, Berlin, 411–466.

    Google Scholar 

  • Kharaka, Y.K., Thordsen, J.J., White, L.D. (2002) Isotope and Chemical Compositions of Meteoric and Thermal Waters and Snow from the Greater Yellowstone National Park Region. U.S. Geological Survey Open-File Report 02-194, 57.

    Google Scholar 

  • Kita, I., Taguchi, S., Matsubaya, O. (1985) Oxygen isotope fractionation between amorphous silica and water at 34–93°C. Nature 314, 83–84.

    Article  CAS  Google Scholar 

  • Land, L.S. (1983) The application of stable isotopes to studies of the origin of dolomite and to problems of diagenesis of clastic sediments. Stable Isotopes in Sedimentary Geology. Society of Economic Paleontologists and Mineralogists Short Course 10, 4.1–4.22.

    Google Scholar 

  • Lowenstern, J.B., Janik, C.J. (2003) The origin of reservoir liquids and vapors from the Geysers geothermal field, California (USA). Reviews in Economic Geology, Spec. Publ. 10 (in press).

    Google Scholar 

  • Lowenstern, J.B. et al. (1999) A geochemical reconnaissance of the Alid volcanic center and geothermal system, Danakil Depression, Eritrea. Geothermics 28, 161–187.

    Article  CAS  Google Scholar 

  • Lowenstern, J.B., Janik, C.J., Fahlquist, L.S., Johnson, L.S. (1999) Gas and Isotope Geochemistry of 81 Steam Samples from Wells in the The Geysers Geothermal Field, Sonoma and Lake Counties, California, U.S.A. U.S. Geological Survey Open-File Report 99-304, 23.

    Google Scholar 

  • Lund, J.W. (1998) Direct Utilization of Geothermal Resources. Technical Paper, GeoHeat Center, Oregon Institute of Technology, Klamath Falls, Oregon.

    Google Scholar 

  • Mariner, R.H., Wiley, L.M. (1976) Geochemisty of thermal waters in Long Valley, Mono County, California. Journal of Geophysical Research 81, 792–800.

    CAS  Google Scholar 

  • Mariner, R.H., Young, H.W., Bullen, T.D., Janik, C.J. (1997) Sulfate-water isotope geothermometry and lead isotope data for the regional geothermal system in the Twin Falls area, south-central Idaho. Geothermal Resources Council Transactions 21, 197–201.

    CAS  Google Scholar 

  • Matsuhisa, Y., Goldsmith, J.R., and Clayton, R.N. (1979) Oxygen isotopic fractionation in the system quartz-albite-anorthite-water. Geochimica et Cosmochimica Acta 43, 1131–1140.

    CAS  Google Scholar 

  • Mizutani, Y., Rafter, T.A. (1969) Oxygen isotopic composition of sulphates, 3. Oxygen isotopic, fractionations in the bisulfate ion-water system. Geochemistry Journal 5, 69–77.

    Google Scholar 

  • Moran, J.E., Fehn, U., Hanor, J.S. (1995) Determinaton of source ages and migration patterns of brines from the U.S. Gulf Coast using 129I. Geochimica et Cosmochimica Acta 59, 5055–5069.

    Article  CAS  Google Scholar 

  • Muffler, L.J.P. (1981) Geothermal resource assessment. Geothermal Systems, Principles and Case Histories, (L. Rybach, L.J.P. Muffler, Eds) John Wiley & Sons, Chichester, UK, 181–198.

    Google Scholar 

  • Nehring, N.L., D’Amore, F. (1984) Gas chemistry and thermometry of the Cerro Prieto, Mexico, geothermal field. Geothermics 13, 75–89.

    Article  CAS  Google Scholar 

  • Norton, D.R., Friedman, I. (1985) Chloride flux out of Yellowstone National Park. Journal of Volcanology and Geothermal Resources 26, 231–250.

    CAS  Google Scholar 

  • Norton, D.R., Friedman, I. (1991) Chloride flux and surface water discharge out of Yellowstone National Park, 1982–1989. U.S. Geological Survey Bulletin 1959-B, 42.

    Google Scholar 

  • Nuti, S. (1992) Isotope techniques in geothermal studies. Applications of Geochemistry in Geothermal Reservoir Development (F. D’Amore, Coordinator) UNITAR/UNDP Centre on Small Energy Resources, Rome, Italy, 215–252.

    Google Scholar 

  • O’Neil, J.R., Taylor, H.P., Jr. (1967) The oxygen isotope and cation exchange chemistry of feldspars. American Mineralogist 52, 1414–1437.

    CAS  Google Scholar 

  • Panichi, C., Nuti, S., Noto, P. (1979) Remarks on the use of isotope geothermometers in the Larderello geothermal field. Isotope Hydrology, Vol. 2 (Proc. Symp) IAEA, Vienna, 613–630.

    Google Scholar 

  • Pang, Z., Reed, M. (1998) Theoretical chemical geothermometry on geothermal waters; problems and methods. Geochimica et Cosmochimica Acta 62, 1083–1091.

    Article  CAS  Google Scholar 

  • Pearson, F.J., Truesdell, A.H. (1978) Tritium in the waters of Yellowstone National Park. U.S. Geological Survey Open-File Report 78-701, 327–329.

    Google Scholar 

  • Phillips, F. M. (2000) Chlorine-36. Environmental Tracers in Subsurface Hydrology (P. Cook, A.L. Herczeg, Eds) Kluwer Academic Publishers, 299–348.

    Google Scholar 

  • Pierce, K.L., Adams, K.D., Sturchio, N.C. (1991) Geologic setting of the Corwin Springs Known Geothermal Resources Area-Mammoth Hot Springs area in and adjacent to Yellowstone National Park. Effects of Potential Geothermal Development in the Corwin Springs Known Geothermal Resources Area, Montana, on the Thermal Features of Yellowstone National Park (M.L. Sorey, Ed.) U.S. Geological Survey Water Resources Investigations Report 91-4052, Cl–C37.

    Google Scholar 

  • Plummer, L.N., Busby, J.F., Lee, R.W., Hanshaw, B.B. (1990) Geochemical modeling of the Madison aquifer in parts of Montana, Wyoming, and South Dakota. Water Resources Research 26, 1981–2014.

    Article  Google Scholar 

  • Richet, P., Bottinga, Y., Javoy, M. (1977) A review of hydrogen, carbon, nitrogen, oxygen, sulfur, and chlorine stable isotope fractionations among gaseous molecules. Ann.Rev. Earth Planet. Sci. 5, 65–110.

    CAS  Google Scholar 

  • Rose, P.E., Goranson, C., Sall, D., Kilbourn, P. (1999) Tracer testing at Steamboat Hills, Nevada, using fluorescein and 1,5-napthalene disulfonate. Twenty-Fourth Workshop on Geothermal Reservoir Engineering, 17–23.

    Google Scholar 

  • Rye, R.O., Truesdell, A.H. (1993) The Question of Recharge to the Geysers and Hot Springs of Yellowstone National Park. U.S. Geological Survey Open-File Report 93-384, 40.

    Google Scholar 

  • Sanford, W.E. (2002) Recharge and groundwater models, An overview. Hydrogeology Journal 10, 110–120.

    Article  CAS  Google Scholar 

  • Savin, S.M., Lee, M. (1988) Isotopic studies of phyllosilicates (Bailey, S.W., Ed.) Hydrous Phyllosilicates (exclusive of micas). Reviews in Mineralogy 19, 189–223.

    CAS  Google Scholar 

  • Smith, R.B., Siegel, L.J. (2000) Windows into the Earth; the geologic story of Yellowstone and Grand Teton National Parks. Oxford University Press, Oxford, United Kingdom, 242.

    Google Scholar 

  • Solomon, D. K. (2000) 4He in groundwater. Environmental Tracers in Subsurface Hydrology (Cook P., Herczeg, A.L., Eds) Kluwer Academic Publishers, 425–440.

    Google Scholar 

  • Sorey, M.L., Colvard, E.M., Nimick, D.A., Shields, R.R., Thordsen, J.J., Ambats, G. (1991) Effects of Potential Geothermal Development in the Corwin Springs Known Geothermal Resources Area, Montana, on the Thermal Features of Yellowstone National Park (M.L. Sorey, Ed.) U.S. Geological Survey Water Resources Investigations Report 91-4052, G1–G41.

    Google Scholar 

  • Sorey, M.L., Colvard, E.M. (1997) Hydrologic investigations in the Mammoth Corridor, Yellowstone National Park and vicinity, U.S.A. Geothermics 26, 221–249.

    Article  CAS  Google Scholar 

  • Spall, W.D., Janecky, D.R., Dixon, P.R., Bayhurst, G.K. (1992) Integrated natural and injected multicomponent tracer experiments; Mammoth Hot Springs, Yellowstone National Park, USA. Water-Rock Interaction (Proc. 7th Int. Symp., Y.K. Kharaka, A.S. Maest, Eds) A.A. Balkema, Rotterdam 843–846.

    Google Scholar 

  • Stanley, W.D., Hoover, D.B., Sorey, M.M., Rodriques, B.D., Heran, W.D. (1991) Electrical geophysical investigations in the Norris-Mammoth corridor, Yellowstone National Park, and adjacent Corwin Springs Known Geothermal Resources Area. Effects of Potential Geothermal Development in the Corwin Springs Known Geothermal Resources Area, Montana, on the Thermal Features of Yellowstone National Park (M.L. Sorey, Ed.) U.S. Geological Survey Water Resources Investigations Report 91-4052, D1–D18.

    Google Scholar 

  • Thordsen, J.J., Kharaka, Y.K., Mariner, R.H., White, L.D. (1992) Controls on the distribution of stable isotopes of meteoric water and snow in the greater Yellowstone National Park region, USA. Water-Rock Interaction (Proc. 7th Int. Symp., Y.K. Kharaka, A.S. Maest, Eds) A.A. Balkema, Rotterdam, 591–595.

    Google Scholar 

  • Torgersen, T., Clarke, W.B. (1985) Helium Accumulation in Groundwater, I, An Evaluation of Sources and the Continental Flux of Crustal 4He in the Great Artesian Basin, Australia. Geochimica et Cosmochimica Acta 49, 1211–1218.

    CAS  Google Scholar 

  • Truesdell, A.H., Walters, M., Kennedy, B.M., Lippman, M.J. (1993) An integrated model for the origin of The Geysers geothermal field. Geothermal Resources Council Transactions 17, 273–280.

    Google Scholar 

  • Truesdell, A.H., Hulston, J.R. (1980) Isotopic evidence on environments of geothermal systems. Handbook of Environmental Isotope Geochemistry; Volume 1, The Terrestrial Environment (P. Fritz, J.-Ch. Fontes, Eds) Elsevier, Amsterdam, 179–226.

    Google Scholar 

  • Truesdell, A.H., Nathenson, M., Rye, R.O. (1977) The effects of subsurface boiling and dilution on the isotopic compositions of Yellowstone thermal waters. Journal of Geophysical Research 82, 3964–3704.

    Google Scholar 

  • Trull, T., Nadeau, S., Pineau, F., Polve, M., Javoy, M. (1993) C-He systematics in hotspot xenoliths, implications for mantle carbon contents and C recycling. Earth and Planetary Science Letters 118, 43–64.

    Article  CAS  Google Scholar 

  • Werner, C., Brantley, S.L., Boomer, K. (2000) CO2 emissions related to the Yellowstone volcanic system; 2. Statistical sampling, total degassing, and transport mechanisms. Journal of Geophysical Research, B, Solid Earth and Planets 105, 10831–10846.

    CAS  Google Scholar 

  • White, D.E., Hutchinson, R., Keith, T.E.C. (1988) The Geology and Remarkable Thermal Activity of Norris Geyser Basin, Yellowstone National Park, Wyoming, U.S. Geological Survey Professional Paper 1456, 84.

    Google Scholar 

  • White, D.E. (1957) Thermal waters of volcanic origin. Geological Society of America Bulletin 68, 1637–1657.

    Google Scholar 

  • Wicks, C.W., Jr., Thatcher, W.R., Dzurisin, D. (1998) Migration of fluids beneath Yellowstone caldera inferred from satellite radar interferometry. Science 282, 458–462.

    Google Scholar 

  • Wright, P.M. (1998) The earth gives up its heat! Geothermal energy — a clean, sustainable resource. Renewable Energy World 1, 21–25.

    Google Scholar 

  • Yurtsever, Y. (1975) Worldwide survey of stable isotopes in precipitation. Isotope Hydrology. IAEA, Vienna.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 IEA

About this chapter

Cite this chapter

Kharaka, Y., Mariner, R. (2005). Geothermal Systems. In: Aggarwal, P.K., Gat, J.R., Froehlich, K.F. (eds) Isotopes in the Water Cycle. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3023-1_16

Download citation

Publish with us

Policies and ethics