Skip to main content

Cardiac Involvement in the Neuroacanthocytosis Syndromes

  • Chapter
Neuroacanthocytosis Syndromes

Abstract

The profound and progressive neurological features largely dominate the clinical course of neuroacanthocytosis. However, the development of a cardiomyopathy is reported in up to two thirds of cases, and sudden death from cardiac arrest is not infrequent. This review summarizes current understanding of familial hypertrophic and dilated cardiomyopathies and the cardiac findings in the neuroacanthocytosis syndromes. Unraveling the molecular basis of neuroacanthocytosis may provide us with a novel cardiomyopathic mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arbustini E, Morbini P, Pilotto A, Gavazzi A, Tavazzi L (2000) Familial dilated cardiomyopathy: from clinical presentation to molecular genetics. Eur Heart J 21: 1825–1832.

    Article  PubMed  CAS  Google Scholar 

  2. Bonne G, Carrier L, Richard P, Hainque B, Schwartz K (1998) Familial hypertrophic cardiomyopathy: from mutations to functional defects. Circ Res 83: 580–593.

    PubMed  CAS  Google Scholar 

  3. Bowles NE, Bowles KR, Towbin JA (2000) The “final common pathway” hypothesis and inherited cardiovascular disease. The role of cytoskeletal proteins in dilated cardiomyopathy. Herz 25: 168–175.

    Article  PubMed  CAS  Google Scholar 

  4. Brugada R et al (1997) Role of candidate modifier genes on the phenotypic expression of hypertrophy in patients with hypertrophic cardiomyopathy. J Investig Med 45: 542–551.

    PubMed  CAS  Google Scholar 

  5. Caballero IR et al (2000) Autosomal recessive chorea-acanthocytosis linked to 9q21. Neurologia 15: 132–135.

    Article  Google Scholar 

  6. Cartron JP et al (1998) Insights into the structure and function of membrane polypeptides carrying blood group antigens. Vox Sang 74(Suppl 2): 29–64.

    PubMed  CAS  Google Scholar 

  7. Cavalli G, de Gregorio C, Nicosia S, Melluso C, Serra S (1995) Cardiac involvement in familial amytrophic chorea with acanthocytosis: description of two new clinical cases. Ann Ital Med Int 10: 249–252.

    PubMed  CAS  Google Scholar 

  8. Chien KR (2000) Meeting Koch’s postulates for calcium signaling in cardiac hypertrophy. J Clin Invest 105: 1339–1342.

    Article  PubMed  CAS  Google Scholar 

  9. Coppin BD, Temple IK (1997) Multiple lentigines syndrome (LEOPARD syndrome or progressive cardiomyopathic lentiginosis). J Med Genet 34: 582–586.

    Article  PubMed  CAS  Google Scholar 

  10. Cuda G, Fananapazir L, Epstein ND, Sellers JR (1997) The in vitro motility activity of beta-cardiac myosin depends on the nature of the beta-myosin heavy chain gene mutation in hypertrophic cardiomyopathy. J Muscle Res Cell Motil 18: 275–283.

    Article  PubMed  CAS  Google Scholar 

  11. Danek A, et al (2001) McLeod neuroacanthocytosis: genotype and phenotype. Ann Neurol 50: 755–764.

    Article  PubMed  CAS  Google Scholar 

  12. Daniels GL, et al (1996) A combination of the effects of rare genotypes at the XK and KEL blood group loci results in absence of Kell system antigens from the red blood cells. Blood 88: 4045–4050.

    PubMed  CAS  Google Scholar 

  13. Dutka DP, Donnelly JE, Nihoyannopoulos P, Oakley CM, Nunez DJ (1999) Marked variation in the cardiomyopathy associated with Friedreich’s ataxia. Heart 81: 141–147.

    PubMed  CAS  Google Scholar 

  14. Faillace RT, Kingston WJ, Nanda NC, Griggs RC (1982) Cardiomyopathy associated with the syndrome of amyotrophic chorea and acanthocytosis. Ann Intern Med 96: 616–617.

    PubMed  CAS  Google Scholar 

  15. Fananapazir L (1999) Advances in molecular genetics and management of hypertrophic cardiomyopathy. JAMA 281: 1746–1752.

    Article  PubMed  CAS  Google Scholar 

  16. Fananapazir L, Epstein ND (1994) Genotype-phenotype correlations in hypertrophic cardiomyopathy. Insights provided by comparisons of kindreds with distinct and identical beta-myosin heavy chain gene mutations. Circulation 89: 22–32.

    PubMed  CAS  Google Scholar 

  17. Fananapazir L, Epstein ND (1995) Prevalence of hypertrophic cardiomyopathy and limitations of screening methods. Circulation 92: 700–704.

    PubMed  CAS  Google Scholar 

  18. Fananapazir L, Chang AC, Epstein SE, McAreavey D (1992) Prognostic determinants in hypertrophic cardiomyopathy. Prospective evaluation of a therapeutic strategy based on clinical, Holter, hemodynamic, and electrophysiological findings. Circulation 86: 730–740.

    PubMed  CAS  Google Scholar 

  19. Fananapazir L, McAreavey D (1997) Hypertrophic cardiomyopathy: evaluation and treatment of patients at high risk for sudden death. Pacing Clin Electrophysiol 2: 478–501.

    Article  Google Scholar 

  20. Ferrans VJ, Rodriguez ER (1983) Specificity of light and electron microscopic features of hypertrophic obstructive and nonobstructive cardiomyopathy. Qualitative, quantitative and etiologic aspects. Eur Heart J 4(Suppl F): 9–22.

    PubMed  Google Scholar 

  21. FHC Mutation Database. http://www.angis.org.au/Databases/Heart/dbsearch.html

    Google Scholar 

  22. Gollob MH, et al (2001) Identification of a gene responsible for familial Wolff-Parkinson-White syndrome. N Engl J Med 344: 1823–1831.

    Article  PubMed  CAS  Google Scholar 

  23. Gray GA, Battistini B, Webb DJ (2000) Endothelins are potent vasoconstrictors, and much more besides. Trends Pharmacol Sci 21: 38–40.

    Article  PubMed  CAS  Google Scholar 

  24. Gross KB, Skrivanek JA, Carlson KC, Kaufman DM (1985) Familial amyotrophic chorea with acanthocytosis. New clinical and laboratory investigations. Arch Neurol 42: 753–756.

    PubMed  CAS  Google Scholar 

  25. Guertl B, Noehammer C, Hoefler G (2000) Metabolic cardiomyopathies. Int J Exp Pathol 81: 349–372.

    Article  PubMed  CAS  Google Scholar 

  26. Hanaoka N, et al (1999) A novel frameshift mutation in the McLeod syndrome gene in a Japanese family. J Neurol Sci 165: 6–9.

    Article  PubMed  CAS  Google Scholar 

  27. Hardie DG, Hawley SA (2001) AMP-activated protein kinase: the energy charge hypothesis revisited. Bioessays 23: 1112–1119.

    Article  PubMed  CAS  Google Scholar 

  28. Hardie RJ et al (1991) Neuroacanthocytosis. A clinical, haematological and pathological study of 19 cases. Brain 114: 13–49.

    PubMed  Google Scholar 

  29. Ho M et al (1994) Isolation of the gene for McLeod syndrome that encodes a novel membrane transport protein. Cell 77: 869–880.

    Article  PubMed  CAS  Google Scholar 

  30. Johnson WG (1995) Friedreich ataxia. Clin Neurosci 3: 33–38.

    PubMed  CAS  Google Scholar 

  31. Kearney MT, Cotton JM, Richardson PJ, Shah AM (2001) Viral myocarditis and dilated cardiomyopathy: mechanisms, manifestations, and management. Postgrad Med J 77: 4–10.

    Article  PubMed  CAS  Google Scholar 

  32. Kirchhefer U et al (2001) Cardiac hypertrophy and impaired relaxation in transgenic mice overexpressing triadin-1. J Biol Chem 276: 4142–4149.

    Article  PubMed  CAS  Google Scholar 

  33. Kiriazis H, Kranias EG (2000) Genetically engineered models with alterations in cardiac membrane calcium-handling proteins. Annu Rev Physiol 62: 321–351.

    Article  PubMed  CAS  Google Scholar 

  34. Leier CV (2001) Dilated cardiomyopathy. Curr Treat Op Cardiovasc Med 3: 451–462.

    Google Scholar 

  35. Lodi R, Taylor DJ, Schapira AH (2001) Mitochondrial dysfunction in Friedreich’s ataxia. Biol Signals Recept 10: 263–270.

    Article  PubMed  CAS  Google Scholar 

  36. Malandrini A et al (1993) Choreo-acanthocytosis like phenotype without acanthocytes: clinicopathological case report. A contribution to the knowledge of the functional pathology of the caudate nucleus. Acta Neuropathol (Berl) 86: 651–658.

    Article  CAS  Google Scholar 

  37. Malandrini A et al (1994) Atypical McLeod syndrome manifested as X-linked chorea-acanthocytosis, neuromyopathy and dilated cardiomyopathy: report of a family. J Neurol Sci 124: 89–94.

    Article  PubMed  CAS  Google Scholar 

  38. Marian AJ, Roberts R (2001) The molecular genetic basis for hypertrophic cardiomyopathy. J Mol Cell Cardiol 33: 655–670.

    Article  PubMed  CAS  Google Scholar 

  39. Marks AR, Priori S, Memmi M, Kontula K, Laitinen PJ (2002) Involvement of the cardiac ryanodine receptor/calcium release channel in catecholaminergic polymorphic ventricular tachycardia. J Cell Physiol 190: 1–6.

    Article  PubMed  CAS  Google Scholar 

  40. Mohiddin SA et al (2003) Utility of genetic screening in hypertrophic cardiomyopathy: Prevalence and significance of novel and double (homozygous and heterozygous) ß-Myosin mutations. Genetic Testing 7: 21–27.

    Article  PubMed  CAS  Google Scholar 

  41. Molkentin JD et al (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93: 215–228.

    Article  PubMed  CAS  Google Scholar 

  42. Mortensen LH (1999) Endothelin and the central and peripheral nervous systems: a decade of endothelin research. Clin Exp Pharmacol Physiol 26: 980–984.

    Article  PubMed  CAS  Google Scholar 

  43. National Institutes of Health Clinical Studies: http://clinicalstudies.info.nih.gov/index.html. Keyword Neuroacanthocytosis.

    Google Scholar 

  44. Olson TM et al (2002) Myosin light chain mutation causes autosomal-recessive cardiomyopathy with mid-cavitary hypertrophy and restrictive physiology. Circulation 21;105: 2337–2340.

    Article  CAS  Google Scholar 

  45. Palmiter KA et al (2000) R403Q and L908V mutant beta-cardiac myosin from patients with familial hypertrophic cardiomyopathy exhibit enhanced mechanical performance at the single molecule level. J Muscle Res Cell Motil 21: 609–620.

    Article  PubMed  CAS  Google Scholar 

  46. Piano MR (2002) Alcoholic cardiomyopathy: incidence, clinical characteristics, and pathophysiology. Chest 121: 1638–1650.

    Article  PubMed  Google Scholar 

  47. Pieske B et al (1999) Functional effects of endothelin and regulation of endothelin receptors in isolated human nonfailing and failing myocardium. Circulation 99: 1802–1809.

    PubMed  CAS  Google Scholar 

  48. Poetter K et al (1996) Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle. Nat Genet 13: 63–69.

    Article  PubMed  CAS  Google Scholar 

  49. Rampoldi L et al (2001) A conserved sorting-associated protein is mutant in chorea-acanthocytosis. Nat Genet 28: 119–120.

    Article  PubMed  CAS  Google Scholar 

  50. Redman CM, Russo D, Lee S (1999) Kell, Kx and the McLeod syndrome. Baillieres Best Pract Res Clin Haematol 12: 621–635.

    Article  PubMed  CAS  Google Scholar 

  51. Richardson P et al (1996) Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of cardiomyopathies. Circulation 93: 841–842.

    PubMed  CAS  Google Scholar 

  52. Russo D, Wu X, Redman CM, Lee S (2000) Expression of Kell blood group protein in nonerythroid tissues. Blood 96: 340–346.

    PubMed  CAS  Google Scholar 

  53. Ruwhof C, van der Laarse A (2000) Mechanical stress-induced cardiac hypertrophy: mechanisms and signal transduction pathways. Cardiovasc Res 47: 23–37.

    Article  PubMed  CAS  Google Scholar 

  54. Sachdev B, Elliott PM, McKenna WJ (2002) Cardiovascular complications of neuromuscular disorders. Curr Treat Op Cardiovasc Med 4: 171–179.

    Google Scholar 

  55. Saltzberg MT (2000) Secondary and infiltrative cardiomyopathies. Curr Treat Op Cardiovasc Med 2: 373–384.

    Google Scholar 

  56. Sato Y et al (1998) Cardiac-specific overexpression of mouse cardiac calsequestrin is associated with depressed cardiovascular function and hypertrophy in transgenic mice. J Biol Chem 273: 28470–28477.

    Article  PubMed  CAS  Google Scholar 

  57. Schonberger J, Seidman CE (2001) Many roads lead to a broken heart: the genetics of dilated cardiomyopathy. Am J Hum Genet. 69: 249–260.

    Article  PubMed  CAS  Google Scholar 

  58. Seidman CE, Seidman JG (1998) Molecular genetic studies of familial hypertrophic cardiomyopathy. Basic Res Cardiol 93(Suppl 3): 13–16.

    Article  PubMed  CAS  Google Scholar 

  59. Seidman JG, Seidman C (2001) The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell 104: 557–567.

    Article  PubMed  CAS  Google Scholar 

  60. Singal PK, Iliskovic N (1998) Doxorubicin-induced cardiomyopathy. N Engl J Med 339: 900–905.

    Article  PubMed  CAS  Google Scholar 

  61. Sorrentino G, De Renzo A, Miniello S, Nori O, Bonavita V (1999) Late appearance of acanthocytes during the course of chorea-acanthocytosis. J Neurol Sci 163: 175–178.

    Article  PubMed  CAS  Google Scholar 

  62. Spitz MC, Jankovic J, Killian JM (1985) Familial tic disorder, parkinsonism, motor neuron disease, and acanthocytosis: a new syndrome. Neurology 35: 366–370.

    PubMed  CAS  Google Scholar 

  63. Takashima H et al (1994) A family of McLeod syndrome, masquerading as chorea-acanthocytosis. J Neurol Sci 124: 56–60.

    Article  PubMed  CAS  Google Scholar 

  64. Towbin JA, Bowles NE (2001) Molecular genetics of left ventricular dysfunction. Curr Mol Med 1: 81–90.

    Article  PubMed  CAS  Google Scholar 

  65. Wigle ED (2001) Cardiomyopathy: The diagnosis of hypertrophic cardiomyopathy. Heart 86: 709–714.

    Article  PubMed  CAS  Google Scholar 

  66. Witt TN et al (1992) McLeod syndrome: a distinct form of neuroacanthocytosis. Report of two cases and literature review with emphasis on neuromuscular manifestations. J Neurol 239: 302–306.

    Article  PubMed  CAS  Google Scholar 

  67. Marsh WL (1983) Deleted antigens of the Rhesus and Kell blood groups: Association with cell membrane defects. In: Garraty G (ed.) Blood group antigens and disease. Arlington, Virginia: American Association of Blood Banks 165–185

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer

About this chapter

Cite this chapter

Mohiddin, S.A., Fananapazir, L. (2004). Cardiac Involvement in the Neuroacanthocytosis Syndromes. In: Danek, A. (eds) Neuroacanthocytosis Syndromes. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2898-9_16

Download citation

Publish with us

Policies and ethics