Skip to main content

Abstract

Cusp properties during periods of By dominant IMF are investigated, since previous studies focus mostly on IMF Bz. The model-data comparisons for various IMF configurations show that the model captures the large-scale features of the particle precipitation very well, not only in the cusp region, but also in other open-field line regions such as the mantle, polar rain, and open-field line low-altitude boundary layer (LLBL). When the IMF is strongly duskward/dawnward and weakly southward, the model predicts the occurrence of a double cusp near noon: one cusp at lower latitude and one at higher latitude. The lower latitude cusp ions originate from the low-latitude magnetosheath whereas the higher latitude ions originate from the high-latitude magnetosheath. The lower latitude cusp is located in the region of weak azimuthal E×B drift, resulting in a dispersionless cusp. The higher latitude cusp is located in the region of strong azimuthal and poleward E×B drift. Because of a significant poleward drift, the higher latitude cusp dispersion has some resemblance to that of the typical southward IMF cusp. Occasionally, the two parts of the double cusp have such narrow latitudinal separation that they give the appearance of just one cusp with extended latitudinal width. From the 40 DMSP passes selected during periods of large (positive or negative) IMF By and small negative IMF Bz, 30 (75%) of the passes exhibit double cusps or cusps with extended latitudinal width. The double cusp result is consistent with the following statistical results: (1) the cusp’s latitudinal width increases with ∣IMF By∣ and (2) the cusp’s equatorward boundary moves to lower latitude with increasing ∣IMF By∣.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aparicio, B., Thelin, B., and Lundin, R., 1991, The polar cusp from a particle point of view: A statistical study based on Viking data, J. Geophys. Res. 98:14,023–14,031.

    ADS  Google Scholar 

  • Aubry, M. P., Russell, C. T., and Kivelson, M. G., 1970, Inward motion of the magnetopause before a substorm, J. Geophys. Res. 75:7018–1031.

    Article  ADS  Google Scholar 

  • Baker, K. B., and Wing, S., 1989, A new magnetic coordinate system for conjugate studies at high latitudes, J. Geophys. Res. 94:9139–9143.

    Article  ADS  Google Scholar 

  • Boudouridis, A., Spence, H. E., and Onsager, T. G., 2001, Investigation of magnetopause reconnection models using two colocated, low-altitude satellites: A unifying reconnection geometry, J. Geophys. Res. 106:29,451–29,466.

    Article  ADS  Google Scholar 

  • Burch, J. L., 1972, Precipitation of low energy electrons at high latitudes: Effects of interplanetary magnetic field and dipole tilt angle, J. Geophys. Res. 77:6696.

    Article  ADS  Google Scholar 

  • Burch, J. L., 1985, Quasi-Neutrality in the polar cusp, Geophys. Res. Lett. 12:469–472.

    Article  ADS  Google Scholar 

  • Carbary, J. F., and Meng, C.-I., 1986, Relations between the interplanetary magnetic field Bz, AE index, and cusp latitude, J. Geophys. Res. 91:1549–1556.

    Article  ADS  Google Scholar 

  • Carlson, C. W., and Torbert, R. B., 1980, Solar wind ion injection in the morning auroral oval, J. Geophys. Res. 85:2903–2908.

    Article  ADS  Google Scholar 

  • Christon, S. P., Williams, D. J., Mitchell, D. G., Frank, L. A., and Huang, C. Y., 1989, Spectral characteristics of plasma sheet ion and electron populations during undisturbed geomagnetic conditions, J. Geophys. Res. 94:13,409–13,424.

    ADS  Google Scholar 

  • Coleman, I. J., Chisham, G., Pinnock, M., and Freeman, M., 2001, An ionospheric convection signature of antiparallel reconnection, J. Geophys. Res. 106:28,995–29,007.

    Article  ADS  Google Scholar 

  • Cowley, S. W. H., and Owen, C. J., 1989, A simple illustrative model of open flux tube motion over the dayside magnetopause, Planet. Space Sci. 37:1461–1475.

    Article  ADS  Google Scholar 

  • Cowley, S. W. H., Morelli, J. P., and Lockwood, M., 1991, Dependence of convective flows and particle precipitation in the high-latitude dayside ionosphere on the x and y components of the interplanetary magnetic field, J. Geophys. Res. 96:5557–5564.

    Article  ADS  Google Scholar 

  • Eather, R. H., and Mende, S. B., 1971, Airborne observations of auroral precipitation patterns, J. Geophys. Res. 76:1746.

    Article  ADS  Google Scholar 

  • Escoubet, C. P., Smith, M. F., Fung, S. F., Anderson, P. C., Hoffman, R. A., Baasinska, E. M., and Bosqued, J. M., 1992, Staircase ion signature on the polar cusp: A case study, Geophys. Res. Lett. 19(17):1735–1738.

    Article  ADS  Google Scholar 

  • Fairfield, D. H., and Scudder, J. D., 1985, Polar rain: Solar coronal electrons in the Earth’s magnetosphere, J. Geophys. Res. 90:4055–4068.

    Article  ADS  Google Scholar 

  • Feldman, W. C., Asbridge, J. R., Bame, S. J., and Montgomery, M. D., 1974, Interplanetary solar wind streams, Rev. Geophys. Space Phys. 12:715.

    Article  ADS  Google Scholar 

  • Feldman, W. C., Asbridge, J. R., Bame, S. J., Gosling, J. T., and Lemons, D. S., 1978, Characteristic electron variations across simple high-speed solar wind streams, J. Geophys. Res. 83:5285–5295.

    Article  ADS  Google Scholar 

  • Frank, L. A., 1971, Plasma in the Earth’s polar magnetosphere, J. Geophys. Res. 76:5202–5219.

    Article  ADS  Google Scholar 

  • Fuselier, S. A., Trattner, K. J., and Petrinec, S. M., 2000, Cusp observations of high-and low-latitude reconnection for northward interplanetary magnetic field, J. Geophys. Res. 105:253–266.

    Article  ADS  Google Scholar 

  • Gosling, J. T., Thomsen, M. F., Bame, S. J., and Elphic, R. C., 1990, Plasma flow reversals at the dayside magnetopause and the origin of asymmetric polar cap convection, J. Geophys. Res. 95:8073–8084.

    Article  ADS  Google Scholar 

  • Gosling, J. T., Thomsen, M. F., Bame, S. J., and Elphic, R. C., 1991, Observations of reconnection of interplanetary and lobe magnetic field lines at high-latitude magnetopause, J. Geophys. Res. 96:14,097–14,106.

    ADS  Google Scholar 

  • Harel, M., Wolf, R. A., Spiro, R. W., Reiff, P. H., Chen, C.-K., Burke, W. J., Rich, F. J., and Smiddy, M., 1981, Quantitative simulation of a magnetospheric substorm, 1, Model logic and overview, J. Geophys. Res. 86:2217–2241.

    Article  ADS  Google Scholar 

  • Heikkila, W. J., and Winningham, J. D., 1971, Penetration of magnetosheath plasma to low altitudes through the dayside magnetospheric cusps, J. Geophys. Res. 76:833.

    Google Scholar 

  • Heppner, J. P., and Maynard, N. C., 1987, Empirical high-latitude electric field models, J. Geophys. Res. 92:4467–4489.

    Article  ADS  Google Scholar 

  • Hill, T. W., and Reiff, P. H., 1977, Evidence of magnetospheric cusp proton acceleration by magnetic merging at the dayside magnetopause, J. Geophys. Res. 82:3623–3628.

    Article  ADS  Google Scholar 

  • Lockwood, M., Sandholt, P. E., Cowley, S. W. H., and Oguti, T., 1989, Interplanetary magnetic field control of dayside auroral activity and the transfer of momentum across the dayside auroral magnetopause, Planet. Space Sci. 37(11):1347–1365.

    Article  ADS  Google Scholar 

  • Lockwood, M., and Smith, M. F., 1989, Low-altitude signatures of the cusp and flux transfer events, Geophys. Res. Lett. 16(8):879–882.

    Article  ADS  Google Scholar 

  • Lockwood, M., and Smith, M. F., 1992, The variation of reconnection rate at the dayside magnetopause and cusp ion precipitation, J. Geophys. Res. 97(A10):14,841–14847.

    Article  ADS  Google Scholar 

  • Lockwood, M., Davis, C. J., Smith, M. F., Onsager, T. G., and Denig, W. F., 1995, Location and characteristics of the reconnection X-line deduced from low-altitude satellite and ground observations, Defense Meteorological Satellite Program and European Incoherent Scatter data, J. Geophys. Res. 100(A11):21803–21813.

    Article  ADS  Google Scholar 

  • Menietti, J. D., and Burch, J. L., 1988, Spatial extent of the plasma injection region in the cusp-magnetosheath interface, J. Geophys. Res. 93:105–113.

    Article  ADS  Google Scholar 

  • Merka, J., Safrankova, J., Nemecek, Z., Savin, S., Skalsky, A., 2000, High-altitude cusp: Interball observation, Adv. Space Res. 25:1425–1434.

    Article  ADS  Google Scholar 

  • Merka, J., Safrankova, J., and Nemecek, Z., 2002, Cusp-like plasma in high altitudes: a statistical study of the width and location of the cusp from Magion-4, Ann. Geophys. 20:311–320.

    Article  ADS  Google Scholar 

  • Maynard, N. C., Denig, W. F., and Burke, W. J., 1995, Mapping ionospheric convection patterns to the magnetosphere, J. Geophys. Res. 100:1713–1721.

    Article  ADS  Google Scholar 

  • Nemecek, Z., Safrankova, J., Prech, L., Simunek, J., Sauvaud, J. A., Fedorov, A., Stenuit, H., Fuselier, S. A., Savin, S., Zelenyi, L., and Berchem, J., 2003, Structure of the outer cusp and sources of the cusp precipitation during intervals of a horizontal IMF, J. Geophys. Res. 108(A12):1420, doi: 10.1029/2003JA009916.

    Article  Google Scholar 

  • Newell, P. T., and Meng, C.-I., 1988, Hemispherical asymmetry in cusp precipitation near solstices, J. Geophys. Res. 93:2643–2648.

    Article  ADS  Google Scholar 

  • Newell, P. T., Meng, C.-I., Sibeck, D. G., and Lepping, R., 1989, Some low-altitude dependencies on the interplanetary magnetic field, J. Geophys. Res. 94:8921–8927.

    Article  ADS  Google Scholar 

  • Newell, P. T., and Meng, C.-I., 1989, Dipole tilt angle effects on the latitude of the cusp and the cleft/LLBL, J. Geophys. Res. 94:6949–6953.

    Article  ADS  Google Scholar 

  • Newell, P. T., Burke, W. J., Meng, C.-I., Sanchez, E. R., and Greenspan, M. E., 1991a, Identification and observations of the plasma mantle at low altitude, J. Geophys. Res. 96:35–45.

    Article  ADS  Google Scholar 

  • Newell, P. T., Wing, S., Meng, C.-I., and Sigilito, V., 1991b, The auroral oval position, structure, and intensity of precipitation from 1984 onward: An automated on-line data base, J. Geophys. Res. 96:5877–5882.

    Article  ADS  Google Scholar 

  • Newell, P. T., Burke, W. J., Sanchez, E. R., Meng, C.-I., Greenspan, M. E., and Clauer, C. R., 1991c, The low-latitude boundary layer and the boundary plasma sheet at low-altitude: Prenoon precipitation regions and convection reversal boundaries, J. Geophys. Res. 96:21,013–21,023.

    ADS  Google Scholar 

  • Newell, P. T., and Meng, C.-I., 1995, Magnetopause dynamics as inferred from plasma observations on low-altitude satellites, in: Physics of Magnetopause, Geophys. Monogr. Ser. 90, P. Song, B. U. Ö. Sonnerup, and M. F. Thomsen, eds., AGU, Washington D. C., pp. 407–416.

    Google Scholar 

  • Newell, P. T., and Wing, S., 1998, Entry of solar wind plasma into the magnetosphere: Observations encounter simulation, in: Geospace Mass and Energy Flow: Results from the International Solar-Terrestrial Physics Program, Geophys. Monogr. Ser. 104, J. L. Horwitz, D. L. Gallagher, and W. K. Peterson, eds., AGU, Washington D. C., pp. 73–84.

    Google Scholar 

  • Onsager, T. G., Kletzing, C. A., Austin, J. B., and MacKiernan, H., 1993, Model of magnetosheath plasma in the magnetosphere: Cusp and mangle particles at low-altitudes, Geophys. Res., Lett. 20:479–482.

    Article  ADS  Google Scholar 

  • Onsager, T. G., and Lockwood, M., 1997, High-latitude particle precipitation and its relationship to magnetospheric source regions, Space Sci. Rev. 80:77–107.

    Article  ADS  Google Scholar 

  • Pitout, F., Newell, P., and Buchert, S., 2002, Simultaneous high-and low-latitude reconnection: ESR and DMSP observations, Ann. Geophys. 20:1311–1320.

    Article  ADS  Google Scholar 

  • Pugh, E. M., and Winslow, G. H., 1966, The Analysis of Physical Measurements, Addison-Wesley, Reading, Mass., pp. 188–199.

    Google Scholar 

  • Reiff, P. H., Hill, T. W., and Burch, J. L., 1977, Solar wind plasma injection at the dayside magnetospheric cusp, J. Geophys. Res. 82:479–491.

    Article  ADS  Google Scholar 

  • Reiff, P. H., Burch, J. L., and Spiro, R. W., 1980, Cusp proton signatures and the interplanetary magnetic field, J. Geophys. Res. 85:5997–6005.

    Article  ADS  Google Scholar 

  • Ridley, A. J., Lu, G., Clauer, C. R., and Papitashvili, V. O., 1998, A statistical study of the ionospheric convection response to changing interplanetary magnetic field conditions using the assimilative mapping of ionospheric electrodynamics technique, J. Geophys. Res. 103:4023–4039.

    Article  ADS  Google Scholar 

  • Roelof, E. C., and Sibeck, D. G., 1993, Magnetopause shape as a bivariate function of interplanetary magnetic field Bz and solar wind dynamic pressure, J. Geophys. Res. 98:21,421–21,450.

    Article  ADS  Google Scholar 

  • Rodger, A. S., Coleman, I. J., and Pinnock, M., 2000, Some comments on transient and steady-state reconnection at the dayside magnetopause, Geophys. Res. Lett. 27:1359–1362.

    Article  ADS  Google Scholar 

  • Ruohoniemi, J. M., and Greenwald, R. A., 1996, Statistical patterns of high-latitude convection obtained from Goose Bay HF radar observations, J. Geophys. Res. 101:21,743–21,763.

    Article  ADS  Google Scholar 

  • Shue, J.-H., Chao, J. K., Fu, H. C., Russell, C. T., Song, P., Khurana, K. K., and Singer, H. J., 1997, A new functional form to study the solar wind control of the magnetopause size and shape, J. Geophys. Res. 102:9497–9511.

    Article  ADS  Google Scholar 

  • Smith, M. F., and Lockwood, M., 1996, Earth’s magnetopsheric cusps, Rev. Geophys. 34:233–260, 1996.

    Article  ADS  Google Scholar 

  • Spreiter, J. R., and Stahara, S. S., 1985, Magnetohydrodynamic and gasdynamic theories for planetary bow waves, in: Collisionless Shocks in the Heliosphere: Reviews of Current Research, Geophys. Monogr. Ser. 35, B. T. Tsurutani and R. G. Stone, eds., AGU, Washington, D. C., pp. 85–107.

    Google Scholar 

  • Su, Y.-J., Ergun, R. E., Peterson, W. K., Onsager, T. G., Pfaff, R., Carlson, C. W., and Strangeway, R. J., 2001, FAST auroral snapshot observations of cusp electron and ion structures, J. Geophys. Res. 106:25595–25600.

    Article  ADS  Google Scholar 

  • Trattner, K. J., Fuselier, S. A., Peterson, W. K., Sauvaud, J.-A., Stenuit, H., and Dubouloz, N., 1999, On spatial and temporal structures in the cusp, J. Geophys. Res. 104(A12):28411–28421.

    Article  ADS  Google Scholar 

  • Trattner, K. J., Fuselier, S. A., Peterson, W. K., and Carlson, C. W., 2002, Spatial features observed in the cusp under steady solar wind conditions, J. Geophys. Res. 107(A10):1288 doi: 10.1029/2001JA000262.

    Article  Google Scholar 

  • Stern, D. P., 1985, Parabolic harmonics in magnetospheric modeling: The main dipole and the ring current, J. Geophys. Res. 90(NA11):10,851–10,863.

    Article  ADS  Google Scholar 

  • Tsyganenko, N. A., and Stern, D. P., 1996, Modeling the global magnetic field of the large-scale Birkeland current systems, J. Geophys. Res. 101(A12):27187–27198.

    Article  ADS  Google Scholar 

  • Voigt, G.-H., 1974, Calculation of the shape and position of the last closed field line boundary and the coordinates of the magnetopause neutral points in a theoritical magnetospheric field model, J. Geophys. 40:213–228.

    Google Scholar 

  • Weiss, L. A., Reiff, P. H., Weber, E. J., Carlson, H. C., Lockwood, M., and Peterson, W. K., 1995, Flow-aligned jets in the magnetospheric cusp: Results from the Geospace Environment Modeling Pilot program, J. Geophys. Res. 100:7649–7659.

    Article  ADS  Google Scholar 

  • Wing, S., Newell, P. T., Sibeck, D. G., and Baker, K. B., 1995, A large statistical study of the entry of interplanetary magnetic field Y-component into the magnetosphere, Geophys. Res. Lett. 22:2083–2086.

    Article  ADS  Google Scholar 

  • Wing, S., Newell, P. T., and Onsager, T. G., 1996, Modeling the entry of magnetosheath electrons into the dayside ionosphere, J. Geophys. Res. 101:13,155–13,167.

    Article  ADS  Google Scholar 

  • Wing, S., and Sibeck, D. G., 1997, Effects of interplanetary magnetic field z component and the solar wind dynamic pressure on the geosynchronous magnetic field, J. Geophys. Lett. 102:7207–7216.

    ADS  Google Scholar 

  • Wing, S., Newell, P. T., and Ruohoniemi, J. M., 2001, Double cusp: Model prediction and Observational Verification, J. Geophys. Res. 106:25,571–25,593.

    Article  ADS  Google Scholar 

  • Woch, J., and Lundin, R., 1992, Magnetosheath plasma precipitation in the polar cusp and its control by the interplanetary magnetic field, J. Geophys. Res. 97:1421–1430.

    Article  ADS  Google Scholar 

  • Xue, S., Reiff, P. H., and Onsager, T. G., 1997, Mid-altitude modeling of cusp ion injections under steady and varying conditions, Geophys. Res. Lett. 24:2275–2278.

    Article  ADS  Google Scholar 

  • Yamauchi, M, and Lundin, R., 1994, Classification of large-scale and meso-scale ion dispersion patterns observed by Viking over the cusp-mantle region, in: Physical signatures of magnetospheric boundary layer processes, J. A. Holtet and A. Efeland, eds., Kluwer Academic Pubs., The Netherlands, pp. 99–109.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this paper

Cite this paper

Wing, S., Newell, P.T., Meng, CI. (2005). CUSP Properties for By Domainant IMF. In: Sauvaud, JA., Němeček, Z. (eds) Multiscale Processes in the Earth’s Magnetosphere: From Interball to Cluster. NATO Science Series II: Mathematics, Physics and Chemistry, vol 178. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2768-0_9

Download citation

Publish with us

Policies and ethics