Skip to main content

The Role of Hydration and Magnetic Fluctuations in The Superconducting Cobaltate

  • Conference paper
Physics of Spin in Solids: Materials, Methods and Applications

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 156))

  • 913 Accesses

Abstract

We report electronic structure calculations within density functional theory for the hydrated superconductor Na1/3CoO21.33H2O and compare the results with the parent compound Na0.3CoO2. We find that intercalation of water into the parent compound has little effect on the Fermi surface outside of the predictable effects expansion, in particular increased two-dimensionality. This implies an intimate connection between the electronic properties of the hydrated and unhydrated phases. Additional density functional calculations are used to investigate the doping dependence of the electronic structure and magnetic properties in hexagonal NaxCoO2. The electronic structure is highly two dimensional, even without accounting for the structural changes associated with hydration. At the local spin density approximation level, a weak itinerant ferromagnetic state is predicted for all doping levels in the range x=0.3 to x=0.7, with competing but weaker itinerant antiferromagnetic solutions. Comparison with experiment implies substantial magnetic quantum fluctuations. Based on the simple Fermi surface and the ferromagnetic tendency of this material, it is speculated that a triplet superconducting state analogous to that in Sr2RuO4 may exist here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. G. Levi, Physics Today, 15, (2003)

    Google Scholar 

  2. D. Carlier, A. Van der Ven, C. Delmas and G. Ceder, Chem. Mater. 15, 2651 (2003); A. Van der Ven and G. Ceder, Electrochemical and Solid-State Letters 3, Ven 1 (2000), and refs. therein.

    Article  Google Scholar 

  3. Von M. Jansen and R. Hoppe, Z. Anorg. Allg. Chem. 408, 104 (1974).

    Article  Google Scholar 

  4. I. Terasaki, Y. Sasago and U. Uchinokura, Phys. Rev. B 56, 12685 (1997); I. Terasaki, Physica B 328, 63 (2003).

    Article  ADS  Google Scholar 

  5. S. Li, R. Funahashi, I. Matsubara, K. Ueno and H. Yamada, J. Mater. Chem. 9, 1659 (1999).

    Article  Google Scholar 

  6. A.C. Masset, C. Michel, A. Maignan, M. Hervieu, O. Toulemonde, F. Studer, B. Raveau and J. Hejtmanek, Phys. Rev. B 62, 166 (2000).

    Article  ADS  Google Scholar 

  7. R. Funahashi, I. Matsubara, H. Ikuta, T. Takeuchi, U. Mizutani and S. Sodeoka, Jpn. J. Appl. Phys., Part 2 39, L1127 (2000).

    Article  Google Scholar 

  8. S. Hebert, S. Lambert, D. Pelloquin and A. Maignan, Phys. Rev. B 64, 172101 (2001).

    Article  ADS  Google Scholar 

  9. Y. Miyazaki, M. Onoda, T. Oku, M. Kikuchi, Y. Ishii, Y. Ono, Y. Morii and T. Kajitani, J. Phys. Soc. Jpn. 71, 491 (2002).

    Article  ADS  Google Scholar 

  10. T. Yamamoto, K. Uchinokura and I. Tsukada, Phys. Rev. B 65, 184434 (2002).

    Article  ADS  Google Scholar 

  11. M. Hervieu, A. Maignan, C. Michel, V. Hardy, N. Creon and B. Raveau, Phys. Rev. B 67, 045112 (2003).

    Article  ADS  Google Scholar 

  12. D. Pelloquin, A. Maignan, S. Hebert, C. Michel and B. Raveau, J. Solid State Chem. 170, 374 (2003).

    Article  ADS  Google Scholar 

  13. D.J. Singh, Phys. Rev. B 61, 13397 (2000).

    Article  ADS  Google Scholar 

  14. R. Asahi, J. Sugiyama and T. Tani, Phys. Rev. B 66, 155103 (2002).

    Article  ADS  Google Scholar 

  15. D.J. Singh, Phys. Rev. B 68, 020503 (2003).

    Article  ADS  Google Scholar 

  16. J. Kunes, K.-W. Lee, W. E. Pickett, cond-mat/0308388, (2003).

    Google Scholar 

  17. G. Baskaran, Phys. Rev. Lett. 91, 097003 (2003).

    Article  ADS  Google Scholar 

  18. Y. Ando, N. Miyamoto, K. Segawa, T. Kawata and I. Terasaki, Phys. Rev. B 60, 10580 (1999).

    Article  ADS  Google Scholar 

  19. W. Koshibae and S. Maekawa, Phys. Rev. Lett. 87, 236603 (2001).

    Article  ADS  Google Scholar 

  20. W. Koshibae and S. Maekawa, Physica B 329, 896 (2003).

    Article  ADS  Google Scholar 

  21. Y.Y. Wang, N.S. Rogado, R.J. Cava and N.P. Ong, Nature 423, 425 (2003).

    Article  ADS  Google Scholar 

  22. A. Maignan, S. Hebert, M. Hervieu, C. Michel, D. Pelloquin and D. Khomskii, J. Phys. Cond. Mat. 15, 2711 (2003).

    Article  ADS  Google Scholar 

  23. I. Tsukada, T. Yamamoto, M. Takagi, T. Tsubone, S. Konno and K. Uchinokura, J. Phys. Soc. Jpn. 70, 834 (2001).

    Article  ADS  Google Scholar 

  24. S.S. Saxena, P. Agarwal, K. Ahilan, F.M. Grosche, R.K.W. Haselwimmer, M.J. Steiner, E. Pugh, I.R. Walker, S.R. Julian, P. Monthoux, G.G. Lonzarich, A. Huxley, I. Sheikin, D. Braithwaite, and J. Flouquet, Nature 406, 587 (2000).

    Article  ADS  Google Scholar 

  25. D. Aoki, A. Huxley, E. Ressouche, D. Braithwaite, J. Floquet, J.P. Brison, E. Lhotel and C. Paulsen, Nature 413, 613 (2001).

    Article  ADS  Google Scholar 

  26. C. Pfleiderer, M. Uhlarz, S.M. Hayden, R. Vollmer, H. von Lohneysen, N.R. Bernhoeft, and G.G. Lonzarich, Nature 412, 58 (2001).

    Article  ADS  Google Scholar 

  27. An alternate, Fulde-Ferrel-Larkin-Ovchinikov, non-triplet state is not excluded in ZrZn2.I.I. Mazin, Phys. Rev. Lett. 88, 187004 (2002) [60]

    Article  ADS  Google Scholar 

  28. Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J.G. Bednorz, and F. Lichtenberg, Nature 372, 532 (1994).

    Article  ADS  Google Scholar 

  29. T.M. Rice and H. Sigrist, J. Phys. Condens. Matter 7, L643 (1995).

    Article  ADS  Google Scholar 

  30. D. Fay and J. Appel, Phys. Rev. B 22, 3173 (1980).

    Article  ADS  Google Scholar 

  31. P.B. Allen and B. Mitrovic, Solid State Phys. 37, 1 (1982).

    Article  Google Scholar 

  32. K. Machida, and T. Ohmi, Phys. Rev. Lett. 86, 850 (2001).

    Article  ADS  Google Scholar 

  33. D. Belitz and T.R. Kirkpatrick, Phys. Rev. Lett. 89, 247202 (2002).

    Article  ADS  Google Scholar 

  34. T.R. Kirkpatrick and D. Belitz, Phys. Rev. B 67, 024515 (2003).

    Article  ADS  Google Scholar 

  35. R. Roussev and A.J. Millis, Phys. Rev. B 63, 140504 (2001).

    Article  ADS  Google Scholar 

  36. G. Santi, S.B. Dugdale and T. Jarlborg, Phys. Rev. Lett. 87, 247004 (2001).

    Article  ADS  Google Scholar 

  37. I.I. Mazin and D.J. Singh, Phys. Rev. Lett. 82, 4324 (1999).

    Article  ADS  Google Scholar 

  38. Y. Sidis, M. Braden, P. Bourges, B. Hennion, S. NishiZaki, Y. Maeno, and Y. Mori, Phys. Rev. Lett. 83, 3320 (1999)

    Article  ADS  Google Scholar 

  39. A.T. Boothroyd, R. Coldea, D.A. Tennant, D. Prabhakaran, C.D. Frost, condmat/0312589

    Google Scholar 

  40. I.I. Mazin and D.J. Singh, Phys. Rev. Lett. 79, 733 (1997).

    Article  ADS  Google Scholar 

  41. K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R.A. Dilanian and T. Sasaki, Nature 422, 53 (2003).

    Article  ADS  Google Scholar 

  42. R.E. Schaak, T. Klimczuk, M.L. Foo and R.J. Cava, Nature 424, 527 (2003).

    Article  ADS  Google Scholar 

  43. H. Sakura, K. Takada, F. Izumi, D. A. Dilanian, R. Sasaki, E. Takayama-Muromachi, cond-mat/0310717.

    Google Scholar 

  44. G. Baskaran, cond-mat/0306569.

    Google Scholar 

  45. B. Lorenz, J. Cmaidalka, R. L. Meng Phys. Rev. B, 68, 132504 (2003).

    Article  ADS  Google Scholar 

  46. M. L. Foo, R. E. Schaak, V. L. Miller, T. Klimczuk, N. S. Rogado, Y. Wang, G. C. Lau, C. Craley, H. W. Zandbergen, N. P. Ong, R. J. Cava, Solid State Commun. 127, 33 (2003).

    Article  ADS  Google Scholar 

  47. C. Honerkamp, Phys. Rev. B 68, 104510 (2003).

    Article  ADS  Google Scholar 

  48. M. Ogata, J. Phys. Soc. Japan, 72, 1839 (2003).

    Article  ADS  Google Scholar 

  49. S. Park, Y. Lee, A. Moodenbaugh, T. Vogt, Phys. Rev. B 68 180505, (2003).

    Article  ADS  Google Scholar 

  50. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luitz, WIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universitat Wien, Austria), ISBN 3-9501031-1-2, 2201, J. Phys. Chem. Sol. 63, (2002).

    Google Scholar 

  51. D.J. Singh, Planewaves, Pseudopotentials and the LAPW Method (Kluwer Academic, Boston, 1994).

    Google Scholar 

  52. J. W. Lynn, Q. Huang, C. M. Brown, V. L. Miller, M. L. Foo, R. E. Schaak, C. Y. Jones, E. A. Mackey, R. J. Cava, cond-mat/0307623.

    Google Scholar 

  53. J. D. Jorgensen, M. Avdeev, D. G. Hinks, J. C. Burley, S. Short, condmat/0307627.

    Google Scholar 

  54. R. Jin, B. C. Sales, P. Khalifah, D. Mandrus, Phys. Rev. Lett., 91 217001, (2003).

    Article  ADS  Google Scholar 

  55. T. Egami, private communication

    Google Scholar 

  56. D. Singh, Phys. Rev. B 43, 6388 (1991).

    Article  ADS  Google Scholar 

  57. D.J. Singh, Phys. Rev. B 61, 13397 (2000).

    Article  ADS  Google Scholar 

  58. A. Aguayo and D.J. Singh, Phys. Rev. B 66, 020401 (2002).

    Article  ADS  Google Scholar 

  59. D.J. Singh and I.I. Mazin, Phys. Rev. Lett. 88, 187004 (2002).

    Article  ADS  Google Scholar 

  60. D.J. Singh and I.I. Mazin, Phys. Rev. B 63, 165101 (2001).

    Article  ADS  Google Scholar 

  61. S.A. Grigera, R.S. Perry, A.J. Schofield, M. Chiao, S.R. Julian, G.G. Lonzarich, S.I. Ikeda, Y. Maeno, A.J. Millis, and A.P. Mackenzie, Science 294, 329 (2001).

    Article  ADS  Google Scholar 

  62. H. Yamada, K. Fukamichi and T. Goto, Phys. Rev. B 65, 024413 (2001).

    Article  ADS  Google Scholar 

  63. A.J. Millis, A.J. Schofield, G.G. Lonzarich and S.A. Grigera, Phys. Rev. Lett. 88, 217204 (2002).

    Article  ADS  Google Scholar 

  64. M. Shimizu, Rep. Prog. Phys. 44, 329 (1981).

    Article  ADS  Google Scholar 

  65. P. Larson, I.I. Mazin and D.J. Singh, cond-mat/0305407.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Johannes, M.D., Singh, D.J. (2004). The Role of Hydration and Magnetic Fluctuations in The Superconducting Cobaltate. In: Halilov, S. (eds) Physics of Spin in Solids: Materials, Methods and Applications. NATO Science Series II: Mathematics, Physics and Chemistry, vol 156. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2708-7_6

Download citation

Publish with us

Policies and ethics