Skip to main content

Electronic Structure of Strongly Correlated Materials: Towards a First Principles Scheme

  • Conference paper
Physics of Spin in Solids: Materials, Methods and Applications

Abstract

We review a recent proposal of a first principles approach to the electronic structure of materials with strong electronic correlations. The scheme combines the GW method with dynamical mean field theory, which enables one to treat strong interaction effects. It allows for a parameter-free description of Coulomb interactions and screening, and thus avoids the conceptual problems inherent to conventional “LDA+DMFT”, such as Hubbard interaction parameters and double counting terms. We describe the application of a simplified version of the approach to the electronic structure of nickel yielding encouraging results. Finally, open questions and further perspectives for the development of the scheme are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991)

    Article  ADS  Google Scholar 

  2. V. I. Anisimov, I. V. Solovyev, M. A. Korotin, M. T. Czyzyk, and G. A. Sawatzky, Phys. Rev. B 48, 16929 (1993)

    Article  ADS  Google Scholar 

  3. A. I. Lichtenstein, J. Zaanen, and V. I. Anisimov, Phys. Rev. B 52, R5467 (1995)

    Article  ADS  Google Scholar 

  4. For a review, see V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, J. Phys.: Condens. Matter 9, 767 (1997)

    Article  ADS  Google Scholar 

  5. V. I. Anisimov et al., J. Phys.: Condens. Matter 9, 7359 (1997)

    Article  ADS  Google Scholar 

  6. A. I. Lichtenstein and M. I. Katsnelson, Phys. Rev. B 57, 6884 (1998).

    Article  ADS  Google Scholar 

  7. For reviews, see Strong Coulomb correlations in electronic structure calculations, edited by V. I. Anisimov, Advances in Condensed Material Science (Gordon and Breach, New York, 2001)

    Google Scholar 

  8. For related ideas, see: G. Kotliar and S. Savrasov in New Theoretical Approaches to Strongly Correlated Systems, Ed. by A. M. Tsvelik (2001) Kluwer Acad. Publ. (and the updated version: cond-mat/0208241)

    Google Scholar 

  9. S. Biermann, F. Aryasetiawan, and A. Georges, Phys. Rev. Lett. 90, 086402 (2003)

    Article  ADS  Google Scholar 

  10. P. Sun and G. Kotliar, Phys. Rev. B 66, 085120 (2002)

    Article  ADS  Google Scholar 

  11. L. Hedin, Phys. Rev. 139, A796 (1965); L. Hedin and S. Lundqvist, Solid State Physics vol. 23, eds. H. Ehrenreich, F. Seitz, and D. Turnbull (Academic, New York, 1969)

    Article  ADS  Google Scholar 

  12. F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998)

    Article  ADS  Google Scholar 

  13. W. G. Aulbur, L. Jöonsson, and J. W. Wilkins, Solid State Physics 54, 1 (2000)

    Article  Google Scholar 

  14. G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74, 601 (2002).

    Article  ADS  Google Scholar 

  15. W. Ku, A. G. Eguiluz, and E. W. Plummer, Phys. Rev. Lett. 85, 2410 (2000); H. Yasuhara, S. Yoshinaga, and M. Higuchi, ibid. 85, 2411 (2000)

    Article  ADS  Google Scholar 

  16. F. Aryasetiawan, Phys. Rev. B 46, 13051 (1992)

    Article  ADS  Google Scholar 

  17. F. Aryasetiawan and O. Gunnarsson, Phys. Rev. Lett. 74, 3221 (1995)

    Article  ADS  Google Scholar 

  18. S. V. Faleev, M. van Schilfgaarde, and T. Kotani, unpublished

    Google Scholar 

  19. L. Hedin, Int. J. Quantum Chem. 54, 445 (1995)

    Article  Google Scholar 

  20. For reviews, see A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996); T. Pruschke et al, Adv. Phys. 44, 187 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  21. O. K. Andersen, Phys. Rev. B 12, 3060 (1975); O. K. Andersen, T. Saha-Dasgupta, S. Erzhov, Bul. Mater. Sci. 26, 19 (2003)

    Article  ADS  Google Scholar 

  22. Q. Si and J. L. Smith, Phys. Rev. Lett. 77, 3391 (1996)

    Article  ADS  Google Scholar 

  23. G. Kotliar and H. Kajueter (unpublished)

    Google Scholar 

  24. H. Kajueter, Ph.D. thesis, Rutgers University, 1996

    Google Scholar 

  25. A. M. Sengupta and A. Georges, Phys. Rev. B 52, 10295 (1995)

    Article  ADS  Google Scholar 

  26. F. Aryasetiawan, M. Imada, A. Georges, G. Kotliar, S. Biermann, and A. I. Lichtenstein, submitted to Phys. Rev. B.

    Google Scholar 

  27. C.-O. Almbladh, U. von Barth and R. van Leeuwen, Int. J. Mod. Phys. B 13, 535 (1999)

    Article  ADS  Google Scholar 

  28. R. Chitra and G. Kotliar, Phys. Rev. B 63, 115110 (2001)

    Article  ADS  Google Scholar 

  29. S. Savrasov and G. Kotliar, cond-mat/0106308

    Google Scholar 

  30. S. Savrasov, G. Kotliar and E. Abrahams, Nature (London) 410, 793 (2000)

    Article  ADS  Google Scholar 

  31. B. Holm and U. von Barth, Phys. Rev. B 57, 2108 (1998)

    Article  ADS  Google Scholar 

  32. P. Sun and G. Kotliar, cond-mat/0312303

    Google Scholar 

  33. A. I. Lichtenstein, M. I. Katsnelson and G. Kotliar, Phys. Rev. Lett. 87, 067205 (2001)

    Article  ADS  Google Scholar 

  34. H. Mårtensson and P. O. Nilsson, Phys. Rev. B 30, 3047 (1984)

    Article  ADS  Google Scholar 

  35. J. Bünemann et al, Europhys. Lett. 61, 667 (2003)

    Article  ADS  Google Scholar 

  36. Y. Motome and G. Kotliar, Phys. Rev. B 62, 12800 (2000)

    Article  ADS  Google Scholar 

  37. J. K. Freericks, M. Jarrell and D. J. Scalapino, Phys. Rev. B 48, 6302 (1993)

    Article  ADS  Google Scholar 

  38. M. Springer and F. Aryasetiawan, Phys. Rev. B 57, 4364 (1998)

    Article  ADS  Google Scholar 

  39. S. Florens, PhD thesis, Paris 2003; S. Florens, A. Georges, L. Demedici, unpublished.

    Google Scholar 

  40. A. Rubtsov, unpublished.

    Google Scholar 

  41. Y. Motome, G. Kotliar, Phys. Rev. B 62, 12800 (2000).

    Article  ADS  Google Scholar 

  42. J. K. Freericks, M. Jarrell, D. J. Scalapino, Phys. Rev. B 48, 6302 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Biermann, S., Aryasetiawan, F., Georges, A. (2004). Electronic Structure of Strongly Correlated Materials: Towards a First Principles Scheme. In: Halilov, S. (eds) Physics of Spin in Solids: Materials, Methods and Applications. NATO Science Series II: Mathematics, Physics and Chemistry, vol 156. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2708-7_4

Download citation

Publish with us

Policies and ethics