Skip to main content

Conclusions

Postharvest physiology of grape clusters calls for a special handling system. Although their respiration rate is very slow, the susceptibility of clusters to dehydration asks for a quick and careful handling. Berries represent most of the cluster biomass; however, rachis represent the weakest link in the chain, because of their high susceptibility to dehydration. Dehydration and weight loss rates are strongly determined by temperature and humidity. Consequently an effort should be made to avoid cluster exposure to high temperatures, which also diminishes the amount of field heat to be eliminated by cooling.

Packing boxes are made with several materials differing in their hygroscopic characteristics, this is important to calculate their correction factors, which allow the correct estimation of the weight to be added to compensate for the loss, and within the limits of this study, there is a whole potential to do so.

Establishing a food safety program is a must for a successful export, since minimizes the probability of hazards for consumers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles, F. B. and C. L. Biles (1991). Characterization of peroxidases in lygnifying peach fruit endocarp. Plant Physiol. 95: 269–273.

    CAS  Google Scholar 

  • Azcón-Bieto, J. and M. Talón (1993). Fisiología y Bioquímica Vegetal. McGraw-Hill, Spain, pp. 252–259.

    Google Scholar 

  • Báez-Sañudo, R., F. R. Tadeo, F. Primo-Millo and L. Zacarías (1992). Physiological and ultrastructural changes during the ripening and senescence of ‘Clementine’ mandarin. Acta Horticulturae. 383: 18–24.

    Google Scholar 

  • Bate, N. J., J. Orr, W. Ni, A. Meromi, T. Nadler-Hassar, P. W. Doerner, R. A. Dixon, C. J. Lamb and Y. Elkind (1994). Quantitative relationship between phenylalanine ammonia-lyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate-determining step in natural product synthesis. Proc. Natl. Acad. Sci. U.S.A. 91: 7608–7612.

    CAS  Google Scholar 

  • Bidlack, J. E., D. R. Buxton, R. M. Shibles and I. C. Anderson (1995). Phenylalanine ammonia-lyase as a precursory enzyme of legume stem lignification. Can. J. Plant Sci. 75: 135–140.

    CAS  Google Scholar 

  • Bruce, R. J. and C. S. West (1989). Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures of castor bean. Plant Physiol.: 889–897.

    Google Scholar 

  • Campbell, M. M. and R. R. Sederoff (1996). Variation in lignin content and composition mechanisms of control and implications for the genetic improvement of plants. Plant Physiol. 110: 3–13.

    CAS  Google Scholar 

  • Carvajal-Millán, E., T. Carvallo, J. A. Orozco, M. A. Martínez-Tèllez, I. Tapia, V. M. Guerrero, A. Rascón-Chu and A. A. Gardea (2001). Polyphenol oxidase activity, color changes and dehydration in table grape rachis during development and storage. J. Agric. Food Chem. 49(2): 946–951.

    Google Scholar 

  • Davin, L. B. and N. G. Lewis (1992). Phenylpropanoid metabolism: Biosynthesis of monolignols, lignans and neolignans, lignins and suberins. In H. A. Stafford and I. R. R. Jenm (eds.), Phenolic Metabolism in Plants. Chapter 11th, Press New York, pp. 325–373.

    Google Scholar 

  • Dixon, R. A. and M. J. Harrison (1990). Activation, structure and organization of genes involved in microbial defense in plants. Advances in Genetics. Academic press Inc. 28: 165–216.

    Article  CAS  Google Scholar 

  • Elboudwarej, A. F., A. Shirazi, A. Cameron and R. C. Herner (1990). Measurements of transpiration of different parts of grape clusters. Technical Abstracts 41st Annual Meeting Am. Soc. Enol. Vitic. Los Angeles, CA, June 28–30, 1990, p. 12.

    Google Scholar 

  • Gardea, A. A., M. A. Martínez-Tèllez, A. Sánchez, M Báez, J. H. Siller, G. González, R. Báez, C. H. Crisosto and R. S. Criddle (1994). Post-harvest weight loss of Flame Seedless clusters. In J. A. Rantz (ed.), Proceedings of the International Symposium on Table Grape Production. Am. Soc. Enol. Vitic. Anaheim, Cal. June 28–29, 1994, pp. 203–206.

    Google Scholar 

  • Hardenburg, R. E., A. E. Watada and C. Y. Wang (1990). The commercial storage of fruits, vegetables, and florist and nursery stocks. U.S.D.A. Agriculture Handbook. Number 66, Revised edition.

    Google Scholar 

  • Harvey, J. M., C. M. Harris, T. A Hanke and P. L. Hartsell (1988). Sulfur dioxide fumigation of table grapes: Relative sorption of SO2 residues, decay, and bleaching. Am. J. Enol. Vitic. 39(2): 132–136.

    CAS  Google Scholar 

  • Kader, A. L. (1985). Postharvest biology and technology: An overview. In A. L. Kader, R. F. Kasmire, F. G. Mitchell, M. S. Reid, N. F. Sommer and J. F. Thompson (eds.), Postharvest Technology of Horticultural Crops. Cooperative Extension University of California, Special Publication 3311, pp. 3–7.

    Google Scholar 

  • Khan, A. A and D. S. Robinson (1993). Purification of an anionic peroxidase isozyme from mango (Mangifera indica L. Var. Chausa). Food Chemistry 46: 61–64.

    Article  CAS  Google Scholar 

  • Lagrimini, M. L. (1991). Wound-induced deposition of polyphenols in transgenic plants over expressing peroxidase. Plant Physiol. 96: 577–583.

    Article  CAS  Google Scholar 

  • Lagrimini, M. L., J. Vaughn, W. A. Erb and S. A. Miller (1993). Peroxidase overproduction in tomato: Wound-induced polyphenol deposition and disease resistance. Hort Science 28(3): 218–221.

    CAS  Google Scholar 

  • McDougall, G. J. (1992). Changes in cell wall-associated peroxidases during the lignification of flax fibres. Phytochemistry 31(10): 3385–3389.

    Article  CAS  Google Scholar 

  • McLellan, K. M. and D. S. Robinson (1983). Cabbage and brussels sprout peroxidase isozymes separated by isoelectric focusing. Phytochemistry 22: 645–647.

    Article  CAS  Google Scholar 

  • Mitchell, F. G. (1985). Postharvest handling systems: Table grapes. In A. L. Kader, R. F. Kasmire, F. G. Mitchell, M. S. Reid, N. F. Sommer, J. F. Thompson (eds.), Postharvest Technology of Horticultural Crops. Cooperative Extension University of California, Special Publication 3311, pp. 149–151.

    Google Scholar 

  • Moulding, P. H., H. F. Grant, K. M. McLellan and D. S. Robinson (1987). Heat stability of soluble and ionically bound peroxidase extracted from apples. Int. J. Food Sci Technol. 22: 391–397.

    CAS  Google Scholar 

  • Mullins, M. G., A. Bouquet and L. E. Williams (1992). Biology of the Grape Vine. Cambridge University Press, Great Britain, pp. 134–140.

    Google Scholar 

  • Nelson, K. E. (1985). Harvesting and Handling California Table Grapes for Market. Agri. Exp. Station, University of California, Bulletin 1913, pp. 3–9.

    Google Scholar 

  • Pearson, R. G. and A. C. Goheen (1988). Compendium of Grape Diseases. APS Press, Saint Paul, MN, p. 13.

    Google Scholar 

  • Perkins-Veazie, J. K. Collins, J. Lloyd and K. R. Striegler (1992). Influence of package on post-harvest quality of Oklahoma and Arkansas table grapes. Am J. Enol. Vitic. 41(1): 79–82.

    Google Scholar 

  • Polle, A., T. Otter and F. Seifert (1994). Apoplastic peroxidases and lignification in needles of Norway spruce (Picea abies L.). Plant Physiol. 106: 53–60.

    CAS  Google Scholar 

  • Rosenquist, J. K. and J. C. Morrison (1988). Causes of variability in wax and cuticle development on grape berries. Proceedings 39th Annual Meeting Am. Soc. Enol. and Vitic. Abstract. Reno, Nevada.

    Google Scholar 

  • Smart, R. and M. Robinson (1991). Sunlight into wine. A handbook for winegrape canopy management. Australian Industrial Publishers Pty Ltd., p. 14.

    Google Scholar 

  • Stafford, A. H. and R. R. I. Jenum (1992). Phenolic Metabolism in Plants. Press, NY, pp. 325–373.

    Google Scholar 

  • Stubenrauch, A.V. and C. W. Mann (1913). Factors governing the successful storage of California table grapes. U.S.D.A. Bulletin No. 35.

    Google Scholar 

  • Winkler, A. J., J.A. Cook, W. M. Kliewer and L. A. Lider (1974). General Viticulture. Second edition. UC Press, pp 572–573.

    Google Scholar 

  • Zieslin, N. and R. Ben-Zaken (1991). Peroxidases, phenylalanine ammonia-lyase and lignification in peduncles of rose flowers. Plant Physiol. Biochem. 29(2): 147–151.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Gardea, A.A. et al. (2004). Table Grape Postharvest Management and Safety Issues. In: Dris, R., Jain, S.M. (eds) Production Practices and Quality Assessment of Food Crops. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2534-3_11

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2534-3_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1700-1

  • Online ISBN: 978-1-4020-2534-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics