Skip to main content

Abstract

We show the existence of a rich variety of fully stationary vortex structures made of an increasing number of vortices nested in paraxial wave fields confined by symmetric and asymmetric harmonic trapping potentials in both static and rotating reference frames. In the static reference frame the clusters are built by means of Hermite-Gauss functions, being termed H-clusters, whereas in the rotating frame they are generated by using the Laguerre-Gauss functions, being thus termed L-clusters. These complex vortex-structures consist of globally linked vortices, rather than independent vortices and, in symmetric traps, they feature monopolar global wave front. Nonstationary or flipping circular vortex-clusters can be built in symmetric traps and they feature multipolar phase front. In asymmetric traps, the existing stationary vortex clusters can feature multipolar wave fronts, depending on the ratio of the trap frequencies. In the nonlinear case, corresponding to nonrotating Bose-Einstein condensates, the stationary vortex clusters also exist and some of these highly excited collective states display dynamical stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. F. Nye and M. V. Berry, Proc. R. Soc. London Ser. A 336, 165 (1974).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. H. J. Lugt, Vortex Flow in Nature and Technology (Krieger, Malabar, FL, 1995).

    Google Scholar 

  3. L. M. Pismen, Vortices in Nonlinear Fields (Clarendon, Oxford, UK, 1999).

    MATH  Google Scholar 

  4. A. Ashkin, Opt. Photon. News 10(5), 41 (1999); M. E. J. Friese et al., Nature 394, 348 (1998); M. J. Padgett and L. Allen, Contemp. Phys. 41(5), 275 (2000); L. Paterson et al., Science 292, 912 (2001).

    Article  ADS  Google Scholar 

  5. P. Galajda and P. Ormos, Appl. Phys. Lett. 78, 249 (2001).

    Article  ADS  Google Scholar 

  6. A. Mair et al., Nature 412, 313 (2001).

    Article  ADS  Google Scholar 

  7. G. Molina-Terriza, J. P. Torres, and L. Torner, Phys. Rev. Lett. 88, 013601 (2002).

    Article  ADS  Google Scholar 

  8. R. J. Donnelly, Quantized Vortices in Hellium II (Cambridge University Press, Cambridge, 1991).

    Google Scholar 

  9. M. R. Matthews et al., Phys. Rev. Lett. 83, 2498 (1999); K. W. Madison et al., Phys. Rev. Lett. 84, 806 (2000).

    Article  ADS  Google Scholar 

  10. D. A. Butts and D. S. Rokhsar, Nature (London) 397, 327 (1999).

    Article  ADS  Google Scholar 

  11. M. Tsubota, K. Kasamatsu and M. Ueda, Phys. Rev. A 65, 023603 (2002).

    Article  ADS  Google Scholar 

  12. O. Horak et al., Phys. Rev. Lett. 88, 043601 (2002).

    Article  ADS  Google Scholar 

  13. I. Bialynicki-Birula, Z. Bialynicka-Birula, and C. Śliwa, Phys. Rev. A 61, 032110 (2000); I. Bialynicki-Birula and Z. Bialynicka-Birula, Phys. Rev. A 65, 014101 (2001).

    Article  ADS  Google Scholar 

  14. For reviews focused on optical vortices, but relevant to BEC too, see D. Rozas, C. T. Law, and G. A. Swartzlander, J. Opt. Soc. Am. B 14, 3054 (1997); Yu. S. Kivshar et al., Opt. Commun. 152, 198 (1998); M. S. Soskin and M. V. Vasnetsov, Singular Optics, in Progress in Optics, vol. 42, p. 219, E. Wolf ed., (Elsevier, Amsterdam, 2001).

    Google Scholar 

  15. I. Freund, Opt. Commun. 159, 99 (1999).

    Article  ADS  Google Scholar 

  16. J. R. Abo-Shaeer et al., Science, 292, 476 (2001).

    Article  ADS  Google Scholar 

  17. M. V. Berry, in Singular Optics, M. S. Soskin ed., Proc. SPIE 3487, pp. 1–5, 1998.

    Google Scholar 

  18. I. Freund, Opt. Commun. 181, 19 (2000); I. Freund and D. A. Kessler, Opt. Commun. 187, 71 (2001).

    Article  ADS  Google Scholar 

  19. I. Freund, Opt. Lett. 26, 545 (2001).

    Article  ADS  Google Scholar 

  20. G. Molina-Terriza, L. Torner, E. M. Wright, J. J. García-Ripoll, V. M. Pérez-García, Opt. Lett. 26, 1601 (2001).

    Article  ADS  Google Scholar 

  21. L.-C. Crasovan, G. Molina-Terriza, J. P. Torres, L. Torner, V. M. Perez-Garcia, and D. Mihalache, Phys. Rev. E 66, 036612 (2002).

    Article  ADS  Google Scholar 

  22. T. Kobayashi, Physica A 303, 469 (2002).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. I. Freund, Opt. Commun. 199, 47 (2001).

    Article  ADS  Google Scholar 

  24. D. L. Feder, C. W. Clark, and B. I. Scheneider, Phys. Rev. Lett. 82, 4956 (1999); A. A. Svidzinsky and A. L. Fetter, Phys. Rev. Lett. 84, 5919 (2000).

    Article  ADS  Google Scholar 

  25. See e.g. J. J. García-Ripoll, V. M. Pérez-García, Phys. Rev. A 64, 013602 (2001).

    Article  ADS  Google Scholar 

  26. J. J. García-Ripoll, V. M. Pérez-García, SIAM J. Sci. Comp. 23, 1315 (2001).

    Article  Google Scholar 

  27. M. Soljacic, S. Sears, and M. Segev, Phys. Rev. Lett. 81, 4851 (1998); A. S. Desyatnikov and Yu. S. Kivshar, Phys. Rev. Lett. 88, 053901 (2002).

    Article  ADS  Google Scholar 

  28. Ya. V. Kartashov et al., Phys. Rev. Lett. 89, 273902 (2002); L.-C. Crasovan et al., Phys. Rev. E 67, 046612 (2003).

    Article  ADS  Google Scholar 

  29. V. M._ Pérez-García and V. Vekslerchik, Phys. Rev. E 67, 061804 (2003); Phys. Rev. E 68, 016617 (2003).

    Article  ADS  Google Scholar 

  30. V. Yu. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, JETP Lett. 52, 429 (1991); N. R. Heckenberg et al., Opt. Lett. 17, 221 (1992).

    ADS  Google Scholar 

  31. J. E. Williams and M. J. Holland, Nature 401, 568 (1999); L. Dobrek et al., Phys. Rev. A 60, R3381 (1999); J. Denschlag et al., Science 287, 97 (2000); G. Andrelczyk et al., Phys. Rev. A 64, 043601 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Crasovan, LC., Vekslerchik, V., Mihalache, D., Torres, J.P., Pérez-García, V.M., Torner, L. (2004). Globally-Linked Vortex Clusters. In: Abdullaev, F.K., Konotop, V.V. (eds) Nonlinear Waves: Classical and Quantum Aspects. NATO Science Series II: Mathematics, Physics and Chemistry, vol 153. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2190-9_6

Download citation

Publish with us

Policies and ethics