Skip to main content

Bose-Einstein Condensation: The Odd Nonlinear Quantum Mechanics

  • Conference paper
Nonlinear Waves: Classical and Quantum Aspects

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 153))

  • 1174 Accesses

Abstract

The non-linear Gross-Pitaevskii (GP) equation plays an important role in the mean-field theory of the Bose-Einstein condensation and has interesting mathematical properties. In this lecture we consider two nontrivial problems related to physical interpretation of the solutions of the GP equation: the superfluidity of a BEC gas in an optical lattice and the superfluidity of a 1D Bose-gas, with special attention to the role of grey solitons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.N. Bogoliubov, J. Phys. USSR 11, 23 (1947)

    Google Scholar 

  2. E.P. Gross, Nuovo Cimento 20, 454 (1961)

    Article  MATH  Google Scholar 

  3. L.P. Pitaevskii, Sov. Phys. JETP 13, 451 (1961)

    MathSciNet  Google Scholar 

  4. L.P. Pitaevskii and S. Stringari, Bose-Einstein Condensation, Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  5. P. Pedri, L.P. Pitaevskii, S. Stringari, C. Fort, S. Burger, F.S. Cataliotti, P. Maddaloni, F. Minardi, and M. Inguscio, Phys. Rev. Lett. 87, 220401 (2001)

    Article  ADS  Google Scholar 

  6. M. Krämer, C. Menotti, L.P. Pitaevskii, and S. Stringari, e-print cond-mat/0305300, Eur. Phys. J. D 27, 247 (2003).

    Article  ADS  Google Scholar 

  7. O. Morsch, J. Müller, M. Cristiani, D. Ciampini, and E. Arimondo, Phys. Rev. Lett. 87, 140402 (2001)

    Article  ADS  Google Scholar 

  8. L.D. Landau, J. Phys. USSR 5, 71 (1941)

    Google Scholar 

  9. D.J. Bishop and J.D. Reppy, Phys. Rev. B 22, 5171 (1980)

    Article  ADS  Google Scholar 

  10. L.D. Landau and E.M. Lifshitz, Quantum mechanics, Pergamon Press, Oxford (1987).

    Google Scholar 

  11. A. Eggington, J. Low Temp. Phys. 28, 1 (1977)

    Article  ADS  Google Scholar 

  12. V. Ambegaokar, B.I. Halperin, D.R. Nelson, and E.D. Siggia, Phys. Rev. B 21, 1806 (1980)

    Article  ADS  Google Scholar 

  13. S. Rapsch, U. Schollwöck., and W. Zwerger, Europhys. Lett. 46, 559 (1999)

    Article  ADS  Google Scholar 

  14. R. Roth and K. Burnett, Phys. Rev. A, 67, 031602 (2003)

    Article  ADS  Google Scholar 

  15. One can read in U. Schollwöck., and W. Zwerger, Europhys. Lett. 46, 559 (1999) [13]: “In the absence of interaction and disorder it is straight forward to show that ρ=1 for arbitrary densities n as it should be.” Analogously in [14]: “The superfluid fraction is 1 for the noninteracting system...”

    Article  ADS  Google Scholar 

  16. F.S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi, A. Trombettoni, A. Smerzi, and M. Inguscio, Science 293, 843 (2001)

    Article  ADS  Google Scholar 

  17. M. Krämer, L. Pitaevskii, and S. Stringari, Phys. Rev. Lett. 88, 180404 (2002)

    Article  ADS  Google Scholar 

  18. E.M. Lifshitz and L.P. Pitaevskii, Statistical Physics, Part 2, Pergamon Press, Oxford (1984).

    Google Scholar 

  19. T. Tsuzuki, J. Low Temp. Phys. 4, 441 (1971)

    Article  ADS  Google Scholar 

  20. The difference between p and \( \tilde p\) is discussed in [21]. However, in this paper the constant of integration in the definition of p has been chosen in a such way that p→±ɛ/c at v→±c. Then the function p(v) has a discontinuity at v=0. This means, that the soliton cannot reverse the direction of its motion in an inhomogeneous gas or in the presence of a friction. In our opinion this choice is hardly acceptable.

    Google Scholar 

  21. S.I. Shevchenko, Sov. J. Low Temp. Phys. 14, 553 (1988)

    Google Scholar 

  22. H. Moritz, T. Stöferle, M. Köhl and T. Esslinger, e-print cond-mat/0307607

    Google Scholar 

  23. M. Girardeau, J. Math. Phys. 1, 516 (1960)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. E.H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. P.P. Kulish, S.V. Manakov and L.D. Faddev, Teor. Mat. Phys. 28, 38 (1976)

    Google Scholar 

  26. M. Ishikava and H. Takayama, J. Phys. Soc. Japan, 49, 1242 (1980)

    Article  ADS  Google Scholar 

  27. G. Astrakharchik and L.P. Pitaevskii, e-print cond-mat/0307247

    Google Scholar 

  28. F.D.M. Haldane, Phys. Rev. Lett. 47, 1840 (1981)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Pitaevskii, L. (2004). Bose-Einstein Condensation: The Odd Nonlinear Quantum Mechanics. In: Abdullaev, F.K., Konotop, V.V. (eds) Nonlinear Waves: Classical and Quantum Aspects. NATO Science Series II: Mathematics, Physics and Chemistry, vol 153. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2190-9_16

Download citation

Publish with us

Policies and ethics