Skip to main content

Electrochemical Charging of Nanocarbons: Fullerenes, Nanotubes, Peapods

  • Conference paper
Frontiers of Multifunctional Integrated Nanosystems

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 152))

Abstract

Electrochemical doping of nanocarbons is easy, versatile and precise in terms of the defined amount of doping charge. Electrochemical reduction of thin solid films of C60 is irreversible, and is accompanied by a structural reconstruction, which can lead to a formation of regular clusters of C60. The Vis-NIR spectroelectrochemistry of single walled carbon nanotubes (SWNCT) points at reversible and fast bleaching of the electronic transitions between Van Hove singularities. The bleaching causes reversible quenching of resonance Raman scattering of both radial breathing and tangential modes of SWCNT. Fullerene peapods, C60@SWCNT and C70@SWCNT exhibit similar quenching of the tube-related modes. The Raman intensities of intratubular C60 increase considerably upon anodic doping, but not at cathodic charging. In contrast to that, all the relevant Raman modes of intratubular C70 show symmetric charge-transfer bleaching of the tube-related modes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F. and Smalley, R.E.: C60 buckminsterfullerene, Nature 318 (1985), 162–3.

    Article  ADS  Google Scholar 

  2. Iijima, S.: Helical microtubules of carbon, Nature 354 (1991), 58.

    Article  ADS  Google Scholar 

  3. Smith, B.W., Monthioux, M. and Luzzi, D.E.: Encapsulated fullerene in nanotubes, Nature 396 (1998), 323–4.

    Article  ADS  Google Scholar 

  4. Rohlfing, E.A., Cox, D.M. and Kaldor, A.: Production and characterization of supersonic carbon cluster beams, J.Chem.Phys. 81 (1984), 3322–30.

    Article  ADS  Google Scholar 

  5. Thrower, P.A.: Novel carbon materials — What if?, Carbon 37 (1999), 1677–8.

    Article  Google Scholar 

  6. Besenhard, J.O. and Fritz, H.P.: Elektrochemie schwarzer Kohlenstoffe, Angew.Chem. 95 (1983), 954–80.

    Article  Google Scholar 

  7. Kavan, L. and Hlavaty, J.: Carbon Nanostructures from Perfluorinated Hydrocarbons, Carbon 37 (1999), 1863–5.

    Article  Google Scholar 

  8. Kavan, L.: Synthesis of All-carbon Chains and Nanoparticles by Chemical Transformation of Halogenated Hydrocarbons at Low Temperatures, Tanso 196 (2001), 22–38.

    Google Scholar 

  9. Kavan, L.: Electrochemical Carbon, Chem.Rev. 97 (1997), 3061–82.

    Article  Google Scholar 

  10. Xie, Q., Perez-Codero, E. and Echegoyen, L.: Electrochemical detection of C60 and C70: enhanced stability of fullerides in solution, J.Am.Chem.Soc. 114 (1992), 3978–80.

    Article  Google Scholar 

  11. Anderson, M.R., Dorn, H.C. and Stevenson, S.A.: Making connection between fullerenes and metallofullerenes, Carbon 38 (2000), 1663–70.

    Article  Google Scholar 

  12. Duclaux, L.: Review on doping of nanotubes, Carbon 40 (2002), 1751–64.

    Article  Google Scholar 

  13. Frackowiak, E. and Beguin, F.: Electrochemical storage of energy in carbon nanotubes, Carbon 40 (2002), 1775–87.

    Article  Google Scholar 

  14. Rajalakshmi, N., Dhathathreyan, K.S. and Govindaraj, A.: Electrochemical investigation of carbon nanotubes for hydrogen storage, Electrochim.Acta 45 (2000), 4511–5.

    Article  Google Scholar 

  15. Claye, A.S., Fischer, J.E., Huffman, C.B., Rinzler, A.G. and Smalley, R.E.: Li insertion electrochemistry at single wall carbon nanotubes, J.Electrochem.Soc. 147 (2000), 2845–52.

    Article  Google Scholar 

  16. Frackowiak, E., Gautier, S., Gaucher, H., Bonnamy, S. and Beguin, F.: Electrochemical storage of lithium in multiwalled nanotubes, Carbon 37 (1999), 61–9.

    Article  Google Scholar 

  17. Nutzenadel, C., Zuttel, A., Chartouni, D. and Schlapbach, L.: Electrochemical storage of hydrogen in carbon nanotubes, Electrochem.Solid-State Lett. 2 (1999), 30–2.

    Article  Google Scholar 

  18. Liu, C., Fan, Y.Y., Liu, M., Cong, H.T., Cheng, H.M. and Dresselhaus, M.S.: Hydrogen storage in singel-walled carbon nanotubes at room temperature, Science 286 (1999), 1127–30.

    Article  Google Scholar 

  19. Monthioux, M.: Filling single wall carbon nanotubes, Carbon 40 (2002), 1809–23.

    Article  Google Scholar 

  20. Bandow, S., Takizawa, M., Kato, H., Okazaki, T., Shinohara, H. and Iijima, S.: peapods Raman, Chem.Phys.Lett. 347 (2001), 23–8.

    Article  ADS  Google Scholar 

  21. Luzzi, D.E. and Smith, B.W.: Carbon cage structures in single wall carbon nanotubes, Carbon 38 (2000), 1751–6.

    Article  Google Scholar 

  22. Okada, S., Saito, S. and Oshiyama, S.: Energetics and electronic structure of encapsulated C60 in carbon nanotube, Phys.Rev.Lett. 86 (2001), 3835–8.

    Article  ADS  Google Scholar 

  23. Kavan, L., Dunsch, L. and Kataura, H.: In situ Vis-NIR and Raman Spectroelectrochemistry at Fullerene Peapods, Chem.Phys.Lett. 361 (2002), 79–85.

    Article  ADS  Google Scholar 

  24. Pichler, T., Kuzmany, H., Kataura, H. and Achiba, Y.: Metallic polymers of C60 inside SWCNT, Phys.Rev.Lett. 87 (2001), 267401–267414.

    Article  ADS  Google Scholar 

  25. Kuzmany, H., Matus, M., Burger, B. and Winter, J.: Raman scattering in fullerenes and fullerides, Adv.Mater. 6 (1994), 731–45.

    Article  Google Scholar 

  26. Schettino, V., Pagliai, M. and Cardini, G.: Infrared and Raman spectra of C70 fullerene, J.Phys.Chem.A 106 (2002), 1815–23.

    Article  Google Scholar 

  27. Kataura, H., Kumazawa, Y., Maniwa, Y., Umezu, I., Suzuki, S., Ohtsuka, Y. and Achiba, Y.: Optical properties of single wall carbon nanotubes, Synth.Metals 103 (1999), 2555–8.

    Article  Google Scholar 

  28. Kukovecz, A., Pichler, T., Kramberger, C. and Kuzmany, H.: Diameter selective doping of single wall carbon nanotubes, Phys.Chem.Chem.Phys. 5 (2003), 582–7.

    Article  Google Scholar 

  29. Kukovecz, A., Pichler, T., Pfeiffer, R. and Kuzmany, H.: Diamater selective charging in p-and n-doped single wall carbon nanotubes, Chem.Commun. (2002), 1730–1.

    Google Scholar 

  30. Liu, X., Pichler, T., Knupfer, M., Golden, M.S., Fink, J., Kataura, H., Achiba, Y., Hirahara, K. and Iijima, S.: Filling factors, structural and electronic properties of C60 in single wall carbon nanotubes, Phys.Rev.B 65 (2002), 045419-1–045419-6.

    ADS  Google Scholar 

  31. Kataura, H., Maniwa, Y., Abe, M., Fujiwara, A., Kodama, T., Kikuchi, K., Imohori, H., Misaki, Y., Suzuki, S. and Achiba, Y.: Optical properties of fullerene and non-fullerene peapods, Appl.Phys.A 74 (2002), 349–54.

    Article  ADS  Google Scholar 

  32. Kataura, H., Maniwa, Y., Kodama, T., Kikuchi, K., Hirahara, K., Suenaga, K., Iijima, S., Suzuki, S., Achiba, Y. and Kratschmer, W.: High yield fullerene encapsulation in single wall carbon nanotubes, Synth.Metals 121 (2001), 1195–6.

    Article  Google Scholar 

  33. Hebard, A.F., Rosseinsky, M.J., Haddon, R.C., Murphy, D.W., Glarum, S.H., Palstra, T.T.M., Ramirez, A.P. and Kortan, A.R.: Superconductivity at 18 K in potassium-doped C60, Nature 350 (1991), 600–2.

    Article  ADS  Google Scholar 

  34. Tanigaki, K., Ebbensen, T.W., Saito, S., Mizuki, J., Tsai, J.S., Kubo, Y. and Kuroshi, S.: Superconductivity at 33 K in CsxRbyC60, Nature 352 (1991), 222–4.

    Article  ADS  Google Scholar 

  35. Jehoulet, C., Obeng, Y.O., Kim, Y.T., Zhou, F. and Bard, A.J.: Electrochemistry and Langmuir trough studies of C60 and C70 films, J.Am.Chem.Soc. 114 (1992), 4237–47.

    Article  Google Scholar 

  36. Janda, P., Krieg, T. and Dunsch, L.: Nanostructuring of highly ordered C60 films by charge transfer, Adv.Mater. 17 (1998), 1434–8.

    Article  Google Scholar 

  37. Kenny, D.J. and Palmer, R.E.: Nucleation and growth of fullerene thin films on graphite, Surf.Science 447 (2000), 126–32.

    Article  ADS  Google Scholar 

  38. Touzik, A., Hermann, H., Janda, P., Dunsch, L. and Wetzig, K.: Nanostructuring of potassium fulleride layers, Europhys.Lett. 60 (2002), 411–7.

    Article  ADS  Google Scholar 

  39. Kavan, L., Rapta, P. and Dunsch, L.: In Situ Raman and Vis NIR Spectroelectrochemistry at Single-Walled Carbon Nanotubes, Chem.Phys.Lett. 328 (2000), 363–8.

    Article  ADS  Google Scholar 

  40. Kavan, L., Rapta, P., Dunsch, L., Bronikowski, M.J., Willis, P. and Smalley, R.E.: Electrochemical Tuning of Electronic Properties of Single Walled Carbon Nanotubes: In-situ Raman and Vis-NIR Study, J.Phys.Chem.B 105 (2001), 10764–71.

    Article  Google Scholar 

  41. Barisci, J.N., Wallace, G.G. and Baughman, R.H.: Electrochemical studies on single-wall nanotubes, J.Electroanal.Chem. 488 (2000), 92–8.

    Article  Google Scholar 

  42. Rao, A.M., Eklund, P.C., Bandow, S., Thess, A. and Smalley, R.E.: Evidence for charge transfer in carbon nanotubes by Raman scattering, Nature 388 (1997), 257–9.

    Article  ADS  Google Scholar 

  43. Kazaoui, S., Minami, N., Jacquemin, R., Kataura, H. and Achiba, Y.: Amphoteric doping of single wall carbon nanotubes probed by optical spectroscopy, Phys.Rev.B 60 (1999), 13339–42.

    Article  ADS  Google Scholar 

  44. Petit, P., Mathis, C., Journet, C. and Bernier, P.: Tuning and monitoring of electronic structure of carbon nanotubes, Chem.Phys.Lett. 305 (1999), 370–4.

    Article  ADS  Google Scholar 

  45. Jouguelet, E., Mathis, C. and Petit, P.: Controlling the electronic properties of single wall carbon nanotubes by chemical doping, Chem.Phys.Lett. 318 (2000), 561–4.

    Article  ADS  Google Scholar 

  46. Jacquemin, R., Kazaoui, S., Yu, D., Hassanien, A., Minami, N., Kataura, H. and Achiba, Y.: Doping mechanism of single-wall carbon nanotubes studied by optical absorption, Synth.Metals 115 (2000), 283–7.

    Article  Google Scholar 

  47. Alvarez, L., Righi, A., Guillard, T., Rols, S., Anglaret, E., Laplaze, D. and Sauvajol, J.L.: resonant Raman of SWCNT nanotubes, Chem.Phys.Lett. 316 (2000), 186–90.

    Article  ADS  Google Scholar 

  48. Sumanasekera, G.U., Allen, J.L., Fang, S.L., Loper, A.L., Rao, A.M. and Eklund, P.C.: Electrochemical oxidation of carbon nanotubes in sulfuric acid, J.Phys.Chem.B 103 (1999), 4292–7.

    Article  Google Scholar 

  49. Claye, A., Rahman, S., Fischer, J.E., Sirenko, A., Sumanasekera, G.U. and Eklund, P.C.: In-situ Raman scattering in alkali doped carbon nanotubes, Chem.Phys.Lett. 333 (2001), 16–22.

    Article  ADS  Google Scholar 

  50. Kazaoui, S., Minami, N., Matsuda, N., Kataura, H. and Achiba, Y.: Electrochemical tuning of electronic states in single wall carbon nanotubes, Appl.Phys.Lett. 78 (2001), 3433–5.

    Article  ADS  Google Scholar 

  51. Claye, A., Nemes, N.M., Janossy, A. and Fischer, J.E.: Structure and electronic properties of potassium doped carbon nanotubes, Phys.Rev.B 62 (2000), R4845–R4848.

    Article  ADS  Google Scholar 

  52. Ghosh, S., Sood, A.K. and Rao, C.N.R.: Electrochemical tuning of band structure of single wall carbon nanotubes probed by in-situ Raman scattering, J.Appl.Phys. 92 (2002), 1165–7.

    Article  ADS  Google Scholar 

  53. Nikolaev, P., Bronikowski, M.J., Bradley, R.K., Rohmund, F., Colbert, D.T., Smith, K.A. and Smalley, R.E.: Gas phase growth of single-walleld carbon nanotubes from CO, Chem.Phys.Lett. 313 (1999), 91–7.

    Article  ADS  Google Scholar 

  54. Bronikowski, M.J., Willis, P.A., Colbert, D.T., Smith, K.A. and Smalley, R.E.: Gas-phase production of carbon single walled nanotubes from carbon monooxide via the HIPCO process a parametric study, J.Vac.Sci.Technol.A 19 (2001), 1800–5.

    Article  ADS  Google Scholar 

  55. Bendiab, N., Anglaret, E., Bantignies, J.L., Zahab, A., Sauvajol, J.L., Petit, P. and Mathis, C.: Stoichiometry dependence of the Raman spectrum of alkali doped carbon nanotubes, Phys.Rev.B 64 (2001), 245424–2454246.

    Article  ADS  Google Scholar 

  56. Bendiab, N., Spina, L., Zahab, A., Poncharal, P., Marliere, C., Bantignies, J.L., Anglaret, E. and Sauvajol, J.L.: Combined in situ conductivity and Raman studies of Rb doping of carbon nanotubes, Phys.Rev.B 63 (2001), 153407–1534074.

    Article  ADS  Google Scholar 

  57. An, C.P., Vardeny, Z.V., Iqbal, Z., Spinks, G., Baughman, R.H. and Zakhidov, A.A.: Raman scattering of electrochemically doped carbon nanotubes, Synth.Metals 116 (2001), 411–4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Kavan, L., Dunsch, L., Heyrovský, J. (2004). Electrochemical Charging of Nanocarbons: Fullerenes, Nanotubes, Peapods. In: Buzaneva, E., Scharff, P. (eds) Frontiers of Multifunctional Integrated Nanosystems. NATO Science Series II: Mathematics, Physics and Chemistry, vol 152. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2173-9_7

Download citation

Publish with us

Policies and ethics