Skip to main content

Mechanical Properties of Carbon Thin Films

  • Conference paper
Frontiers of Multifunctional Integrated Nanosystems

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 152))

  • 894 Accesses

Abstract

Thin film — substrate interaction, residual stress and elastic properties in the disperse and films of nanometeric size are of great importance in the development of microsystems, nanostructures and nanomaterials when working with atoms, molecules or supramolecule structures. Scaling down of geometrical dimensions of the structures, devices and systems is accompanied by control of matter on the micro and nano-meter length scale.

Physical principles of the conventional method for the internal stress measuring — the cantilever technique and electronic speckle pattern interferometry are discussed and related to the stress control in thin film — semiconductor substrate system. Stress kinetics of the thin film structure can be monitored in — situ allowing to control this process at the nucleation stage of the film. The main advantage of the electronic speckle pattern interferometry as compared to the classical interferometry and holographic methods is ability to measure strain of the real diffusive surfaces. Development of the electronic speckle pattern interferometry allows to apply it to the small size (hundreds of micrometers) objects (microelectromechanical devices, microstructures etc.) to monitor and control variations of geometrical dimensions of the different components. Development of the new analysis method is prospective for the new type of structures — freestanding films. Technology of producing of such form film (metallic, diamond like carbon, multilayer structures) combines advantages of plasma based technologies of deposition and combinations of different type of etching. Application of the newly developed optical method with the microtensile machine allows defining elastic properties of such thin film and influence of different technological conditions during deposition.

Carbon nanofibers have been grown by direct ion beam deposition from the acetylene gas (C2H2) and hexane-hydrogen vapor (C6H14+H2).on Si‹100› substrates at 500°C and 750°C temperature. In all cases SiO2 overlayer with catalytic Ni film has been used. Features of the nanofiber structures and relation with the residual stress were defined.

Optimization of the technology of the diamond like carbon films enabled to apply this film in the mold used for the nanoimprint lithography (NIL). Equipment and the technology of the NIL was created and applied in our institute for the replication of the photonic structures in the semiconductor substrate. Preparation of the diamond mold for the NIL let to avoid polymer — mold sticking problems during mold separation and raise mold durability as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Robertson, J. (2002) Diamond-like amorphous carbon Materials Science and Engineering: R: Reports vol.37, p.129–281.

    Article  Google Scholar 

  2. Shenderova, O.A., Zhirnov, V.V., Brenner D.W. (2002) Carbon Nanostructures Critical Reviews in Solid State and Materials Sciences vol.27, p.227–256.

    Article  ADS  Google Scholar 

  3. Pranevicius, L. Coating Technology: Ion Beam Deposition, Satas and Associates, Warwick, Rhode Island, 1993.

    Google Scholar 

  4. Kopustinskas, V., Meškinis, Š., Grigaliūnas, V., Tamulevićius, S., Pucéta, M., Niaura, G., Tomašiūnas, R. (2002) Ion beam synthesis of α-CNx:H films Surface and Coatings Technology vol.151–152, p. 180–183.

    Article  Google Scholar 

  5. Wu, R.L.C., Lanter, W., Wrbanek, J., DeJoseph, C. (2001) Large-area surface treatment by ion beam technique Surf Coat Technol vol.140, p.35–43.

    Article  Google Scholar 

  6. Yamamoto, Kazuhiro, Wazumi, Koichiro, Watanabe, Toshiya, Koga, Yoshinori, Iijima, Sumio (2002) Tribological properties of diamond-like carbon films prepared by mass-separated ion beam deposition Diamond and Related Materials vol.11, p.130–1134.

    Google Scholar 

  7. Scott, W.W., Bhushana, B., Lakshmikumaran, A.V. (2000) Ultrathin diamond-like carbon coatings used for reduction of pole tip recession in magnetic tape heads J. Appl. Phys. vol.87, p.6182–6184.

    Article  ADS  Google Scholar 

  8. Feng, J.Y., Shang, N.G., Sun, X.S., Bello, I., Lee, C.S., Lee, S.T. (2000) Microcrystalline diamond films by direct ion beam deposition Diamond Relat. Mater. vol.9, p.872–876.

    Article  Google Scholar 

  9. Sun, X.S., Zhang, W.J., Wang, N., Bello, I., Lee, C.S., Lee S.T. (1999) Formation of crystalline diamond by ion beam deposition J. Non-Crystalline Solids vol.254, p.174–179.

    Article  ADS  Google Scholar 

  10. Hofsass, H., Ronning, C., Feldermann, H. (2001) Film growth using mass-separated ion beams, in Application of Accelerators in Research and Industry — Sixteenth Inťl. Conf. Ed. by J. L. Duggan and I. L. Morgan, American Institute of Physics, p.947–950.

    Google Scholar 

  11. Druz, B., Zaritskiy, I., Hoehn, J., Polyakov, V.I., Rukovishnikov, A.I., Novotny, V. (2001) Direct ion beam deposition of hard 30 GPa diamond-like films from RF inductively coupled plasma source Diamond and Related Materials vol.10, p.931–936.

    Article  Google Scholar 

  12. Lenardi, C., Baker, M.A., Briois, V., Nobili, L., Piseri, P., Gissler, W. (1999) Properties of amorphous a-CH(:N) films synthesized by direct ion beam deposition and plasma-assisted chemical vapour deposition Diamond and Related Materials vol.8, p.595–600.

    Article  Google Scholar 

  13. Maýtre, N., Girardeau, Th., Camelio, S., Barranco, A., Vouagner, D., Breelle, E. (2003) Effects of negative low self-bias on hydrogenated amorphous carbon films deposited by PECVD technique Diamond and Related Materials vol.12, p.988–992.

    Article  Google Scholar 

  14. Sheeja, D., Tay, B.K., Leong, K.W., Lee, C.H. (2002) Effect of film thickness on the stress and adhesion of diamond-like carbon coatings Diamond and Related Materials vol.11, p.1643–1647.

    Article  Google Scholar 

  15. Ferrari, A.C., Rodil, S.E., Robertson, J., Milne, W.I. (2002) Is stress necessary to stabilise sp bonding in diamond-like carbon? Diamond and Related Materials vol.11, p. 994–999.

    Article  Google Scholar 

  16. Durand, O., Bisaro, R., Brierley, C.J., Galtier, P., Kennedy, G.R., Kruger, J.K., Olivier, J. (2000) Residual stresses in chemical vapor deposition free-standing diamond films by X-ray diffraction analyses. Materials Science and Engineering A vol.228, p.217–222.

    Article  Google Scholar 

  17. Shang, N.G., Lee, C.S., Lin, Z.D., Bello, I., Lee, S.T. (2000) Intrinsic stress evolution in diamond films prepared in a CH4H2NH3 hot filament chemical vapor deposition system. Diamond and Related Materials vol.9, p.1388–1392.

    Article  Google Scholar 

  18. Schreck, M., Baur, T., Fehling R. et al. (1998) Modification of diamond film growth by a negative bias voltage in microwave plasma chemical vapor deposition Diamond and Related Materials vol.7, p.293–298.

    Article  Google Scholar 

  19. Tamulevičius S. (1998) Stress and strain in the vacuum deposited thin films, Vacuum, vol.51, No2, p.127–139

    Article  Google Scholar 

  20. Užupis, A., Tamulevičius, S., Augulis, L., Jankauskas, J., Vengalis, B., Butkutè, R. (2002) Thermal and intrinsic stress in magnetron-sputtered thin ITO films on amorphous silica substrates, Lithuanian Journal of Physics, vol.42, No4, p.291–295

    Google Scholar 

  21. Watanabe Makoto, Mumm Daniel, Chiras Stefanie, Evans Anthony (2002) Measurements of the residual stress in a Pt-aluminide bond coat, Scripta Materialia vol.46, p.67–70

    Article  Google Scholar 

  22. F. Spaepen (2000) Interfaces and stresses in thin films, Acta mater. Vol48, p.31–42

    Article  Google Scholar 

  23. Michler, J., Mermoux, M., von Kaenel, Y., Haouni A., Lucazeau G., Blank E. (1999) Residual stress in diamond films: origins and modelling, Thin Solid Films, vol.357, p.189–201

    Article  ADS  Google Scholar 

  24. Pauleau, Y., (2001) Generation and evalution of residual stresses in physical vapour-deposited thin films, Vacuum, vol.61 p.175–181

    Article  Google Scholar 

  25. Zhou, X.T., Lee, S.T., Bello, I., Cheung, A.C., Chiu, D.S., Lam, Y.W., Lee, C.S., Leung, K.M., He, X.M. (2000) Materials Science and Engineering B vol.77, p.229–234.

    Article  Google Scholar 

  26. Jacobsohn, L.G., Prioli, R., Freire Jr., F.L., Mariotto, G., Lacerda, M.M., Chung Y.W. (2000) Comparative study of anneal-induced modifications of amorphous carbon films deposited by dc magnetron sputtering at different argon plasma pressures Diamond and Related Materials vol.9, p.680–684.

    Article  Google Scholar 

  27. Fan, Qi Hua, Gracio, J., Pereira, E. (2000) Residual stresses in chemical vapour deposited diamond films Diamond and Related Materials vol.9, p.1739–1743.

    Article  Google Scholar 

  28. Kim, J.G., Yu, Jin (1998) Behavior of residual stress on CVD diamond films Materials Science and Engineering B vol.57, p.24–27.

    Article  Google Scholar 

  29. Zocco, A., Perrone, A., Broitman, E., Czigany, Zs., Hultman, L., Anderle, M., Laidani, N. (2002) Mechanical and tribological properties of CNx films deposited by reactive pulsed laser ablation Diamond and Related Materials vol.11, p.98–104.

    Article  Google Scholar 

  30. Bai, M., Kato, K., Umehara, N., Miyake, Y., Xu, J., Tokisue, H. (2000) Dependence of microstructure and nanomechanical properties of amorphous carbon nitride thin films on vacuum annealing Thin Solid Films v.376, p.170–178.

    Article  ADS  Google Scholar 

  31. Benlahsen, M., Henocque, J., Zellama, K., Branger, V., Badawi F. (1998) The effect of hydrogen evolution on the mechanical properties of hydrogenated amorphous carbon Diamond and Related Materials v.7, p.769–773.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Tamulevičius, S., Augulis, L., Meškinis, Š., Grigaliunas, V. (2004). Mechanical Properties of Carbon Thin Films. In: Buzaneva, E., Scharff, P. (eds) Frontiers of Multifunctional Integrated Nanosystems. NATO Science Series II: Mathematics, Physics and Chemistry, vol 152. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2173-9_18

Download citation

Publish with us

Policies and ethics