Skip to main content

The Nanospace Inside Single-Wall Carbon Nanotubes

  • Conference paper
Frontiers of Multifunctional Integrated Nanosystems

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 152))

Abstract

The nanospace inside single wall carbon nanotubes was studied by Raman spectroscopy and high resolution transmission electron microscopy. To explore this space, C60 molecules were filled into the tubes to create a peapod system. Upon doping with electron donors the cage of the tubes as well as the cages of the fullerenes received charge and eventually turned into C60 −6 molecules. These molecules react to a linear and single bonded polymeric phase. Alternatively, upon annealing at high temperatures the C60 molecules serve as a carbon source to grow a second tube inside the primary tube. This tube exhibits extremely narrow Raman lines for the radial breathing mode indicating a highly defect free material. They thus apostrophe the inside of the tube cage as a nano clean room. The small size of the inner-shell tubes allows for a full assignment of the observed radial breathing modes to chiral vectors. The deviation of electronic and vibrational properties of the tubes from a tight binding behavior is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F. and Smalley, R.E. (1985), “C60: Buckminsterfullerene”, Science, vol. 318, pp. 162–163.

    Google Scholar 

  2. Heath, J., O’Brian, S.C., Zhang, Q., Liu, Y., Curl, R.F., Kroto, H.W., Tittiel, F.K., and Smalley, R.E., J. (1985), J. Am. Chem. Soc. Vol. 107, pp.7779–7783.

    Article  Google Scholar 

  3. Dresselhaus, M.S., Dresselhaus, G. and Eklund, P.C. (1996), “Science of Fullerenes and Carbon Nanotubes”, Academic Press Inc., San Diego.

    Google Scholar 

  4. Stevenson, S. et al. (1999), “Small-bandgap endohedral metallofullerenes in high yield and purity”, Nature, vol. 401, pp. 55–59.

    Article  ADS  Google Scholar 

  5. Shinohara, H., (2000), “Endohedral metallofullerenes”, Rep. Prog. Phys., vol. 63, pp. 843–892.

    Article  ADS  Google Scholar 

  6. Wang, Ch-R, Kai, T., Tomiyama, T., Yoshida, T., Kobayashi, Y., Nishibori, E., Takata, M., Sakata, M., and Shinohara, N. (2001), “A Scandium Carbide Endohedral Metallofullerene (Sc2C2)@C84”, Angew. Chem., vol. 113, pp. 411–413.

    Article  Google Scholar 

  7. Tsang, S.C., Chen, Y.K., Harris, P.J.F., and Green, M.L.H., (1994), “A simple chemical method of opening and filling carbon nanotubes”, Nature, vol. 372, pp. 159–162.

    Article  ADS  Google Scholar 

  8. Smith, B.W., Monthioux, M. and Luzzi, D.E. (1998), “Encapsulated C60 in carbon nanotubes”, Nature, vol. 396, pp. 323–324.

    Article  ADS  Google Scholar 

  9. Kataura, H., Maniwa, Y., Kodama, T., Kikuchi, K., Hirahara, K., Suenaga, K., Iijima, S., Suzuki, S., Achiba, Y. and Krätschmer, W. (2001), “High-yield fullerene encapsulation in single-wall carbon nanotubes”, Synthetic Met., vol. 121, pp. 1195–1196.

    Article  Google Scholar 

  10. Sloan, J., Kirkland, A.I., Hutchison, J.L. and Green, M.L.H. (2002), “Integral atomic layer architectures of 1D crystals inserted into single walled carbon nanotubes”, Chem. Commun., pp. 1319–1332.

    Google Scholar 

  11. Satishkumar, B. C., Taubert, A., Luzzi, D. E. (2003), “Filling single-wall carbon nanotubes with d-and f-metal chloride and metal nanowires”, J. Nanosci. Nanotechno., vol. 3, pp. 159–163.

    Article  Google Scholar 

  12. Zhao, X., Ando, Y., Liu, Y., Jinno, M., Suzuki, T. (2003), “Carbon nanowire Made of a Long Linear Carbon Chain Inserted Inside a Multiwalled Carbon Nanotube”, Phys. Rev. Lett., vol. 90, pp. 187401.

    Article  ADS  Google Scholar 

  13. Kuzmany, H., Pfeiffer, R., Kramberger, C., Pichler, T., Liu, X., Knupfer, M., Fink, J., Kataura, H., Achiba, Y., Smith, B.W. and Luzzi, D.E. (2003), “Analysis of the concentration of C60 fullerenes in single wall carbon nanotubes”, Appl. Phys. A, vol. 76, pp. 449–455.

    Article  ADS  Google Scholar 

  14. Kataura, H., Abe, M., Fujiwara, A., Kodama, T., Kikuchi, K., Misaki, T., Suzuki, S., Achiba, Y., and Maniwa, Y. (2002), “Fullerene Peapods and Double-Wall Nanotubes: Structures and Optical Properties”, XVI Int. Winterschool on Electr. Prop. Of Molec. Nanostrucrures, Ed. H. Kuzmany et al., AIP Conference Proceedings 633, pp. 103–107.

    Google Scholar 

  15. Liu, X., Pichler, T., Knupfer, M., Golden, M.S., Fink, J., Kataura, H., Achiba, Y., Hirahara, K. and Iijima, S. (2002), “Filling factors, structural, and electronic properties of C60 molecules in single-wall carbon nanotubes”, Phys. Rev. B, vol. 65, pp. 045419.

    Article  ADS  Google Scholar 

  16. Saito, R., Dresselhaus, G., Dresselhaus, M.S. (1998), “Physical Properties of Carbon Nanotubes”, Imperial College Press, London.

    Book  Google Scholar 

  17. Kramberger, Ch., Bäs-Fischlmaier, S., http://www.univie.ac.at/spectroscopy/DOS_SWCNT/DOS.html

  18. Kataura, H., Kumazawa, Y., Maniwa, Y., Umezu, I., Suzuki, S., Ohtsuka, Y. and Achiba, Y. (1999), “Optical properties of single-wall carbon nanotubes”, Synthetic Met., vol. 103, pp. 2555–2558.

    Article  Google Scholar 

  19. Asaka, S. et al., Phys. Rev. Lett., vol. 80, 3779 (1998).

    Article  ADS  Google Scholar 

  20. Jorio, A., Saito, R., Hafner, J. H., Lieber, C. M., Hunter, M., McClure, T, Dresselhaus, G. and Dresselhaus, M. S. (2001), “Structural (n,m) Determination of Isolated Single-Wall Carbon Nanotubes by Resonant Raman Scattering”, Phys. Rev. Lett., vol. 86, pp. 1118–1121.

    Article  ADS  Google Scholar 

  21. Kürti, J., Kresse, G. and Kuzmany, H. (1998), “First-principles calculations of the radial breathing mode of single-wall carbon nanotubes”, Phys. Rev. B, vol. 58, pp. R8869.

    Article  ADS  Google Scholar 

  22. Kürti, J., Zólyomi, V., Grüneis, A. and Kuzmany, H. (2002), “Double resonant Raman phenomena enhanced by van Hove singularities in single-wall carbon nanotubes”, Phys. Rev. B, vol. 65, pp. 165433.

    Article  ADS  Google Scholar 

  23. Bendiab, N., Spina, L., Zahab, A., Poncharal, P., Maliere, C., Bantignies, J.L., Anglaret, E., Sauvajol, J.L. (2001), “Combined in situ conductivity and Raman Studies of rubidium doping of single-wall carbon nanotubes”, Phys. Rev. B 63, 153407.

    Article  ADS  Google Scholar 

  24. Pichler, T., Kuzmany, H., Kataura, H. and Achiba, Y. (2001), “Metallic Polymers of C60 Inside Single-Walled Carbon Nanotubes”, Phys. Rev. Lett., vol. 87, pp. 267401.

    Article  ADS  Google Scholar 

  25. Rao, A.M., Eklund, P.C., Bandow, Sunji, Thess, A., and Smalley, R.E. (1997), “Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering”, Nature 388, pp. 257–260

    Article  ADS  Google Scholar 

  26. Pichler, T., Kukovecz, A., Kuzmany, H., Kataura, H., and Achiba, Y. (2003), “Quasicontinuous electron and hole doping of C60 peapods”, Phys. Rev. B 67, 125416.

    Article  ADS  Google Scholar 

  27. Kuzmany, H., Matus, M., Burger, B., and Winter, J. (1994), “Raman Scattering in C60 Fullerenes and Fullerides”, Adv. Mater. 6, 731.

    Article  Google Scholar 

  28. Pekker, S., Oszlányi, G. and Faigel, G. (1998), “Structure and stability of covalently bonded polyfulleride ions in AxC60 salts”, Chem. Phys. Lett., vol. 282, pp. 435–441.

    Article  ADS  Google Scholar 

  29. Bandow, S., Takizawa, M., Hirahara, K., Yudasaka, M. and Iijima, S. (2001), “Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes”, Chem. Phys. Lett., vol. 337, pp. 48–54.

    Article  ADS  Google Scholar 

  30. Hirahara, K., unpublished.

    Google Scholar 

  31. Zhao, Y., Yakobson, B.I. and Smalley, R.E. (2002), “Dynamic Topology of Fullerene Coalescence”, Phys. Rev. Lett., vol. 88, pp. 185501.

    Article  ADS  Google Scholar 

  32. Simon, F. and Holzweber, M., unpublished.

    Google Scholar 

  33. Kramberger, Ch. et al., unpublished.

    Google Scholar 

  34. Melle-Franco, M., Kuzmany, H. and Zerbetto, F. (2003), “Mechanical Interactions in All-Carbon Peapods”, J. Phys. Chem. B, vol. 107, pp. 6986–6990.

    Article  Google Scholar 

  35. Zolyom, V., and J. Kürti (2003), unpublished.

    Google Scholar 

  36. Pfeiffer, R., Kuzmany, H., Kramberger, Ch., Schaman, Ch., Pichler, T., Kataura, H., Achiba, Y., Kürti, J. and Zólyomi, V. (2003), “Unusual High Degree of Unperturbed Environment in the Interior of Single-Wall Carbon Nanotubes”, Phys. Rev. Lett., vol. 90, pp. 225501.

    Article  ADS  Google Scholar 

  37. O’Connell, M.J., Bachilo, S.M., Huffman, C.B., Moore, V.C., Strano, M.S., Haroz, E.H., Rialon, K.L., Boul, P.J., Noon, W.H., Kittrell, C., Ma, J., Hauge, R.H., Weisman, R.B. and Smalley, R.E. (2002), “Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes”, Science, vol. 297, pp. 593–596.

    Article  ADS  Google Scholar 

  38. Popov, V. et al., this volume

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Kuzmany, H., Pfeiffer, R., Kramberger, C., Pichler, T. (2004). The Nanospace Inside Single-Wall Carbon Nanotubes. In: Buzaneva, E., Scharff, P. (eds) Frontiers of Multifunctional Integrated Nanosystems. NATO Science Series II: Mathematics, Physics and Chemistry, vol 152. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2173-9_17

Download citation

Publish with us

Policies and ethics