Skip to main content

Polarized Raman Spectroscopy of Single Layer and Multilayer Ge/Si(001) Quantum Dot Heterostructures

  • Conference paper
Frontiers of Multifunctional Integrated Nanosystems

Abstract

Polarized Raman spectroscopy in backscattering geometry has been applied here for investigation of Ge/Si(001) quantum dot multilayer structures (ranging from 1 to 20 layers) grown by the Stranski-Krastanov technique. The characteristic Raman spectra of Ge dots have been obtained by taking the difference between the Raman spectra of the dots sample and the reference Si substrate, registered with the same polarization in the scattering channel. We found that Raman spectra of Ge dots obtained in such a manner are strongly polarized, in particular for Si-Ge (at ∼413 cm−1) and Ge-Ge (at ∼295 cm−1) vibrational modes. The dependence of peak intensity and peak position of Si-Ge and Ge-Ge modes versus the number of Ge dot layers, and versus the growth temperature for single layers, have been studied. The intermixing effect and stress have been obtained using the ratio of the integrated intensities and the peak positions of the aforementioned bands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goldstein L., Glas F., Marzin J.Y., Charasse M.N. and Le Roux G. (1985), “Growth by molecular beam epitaxy and characterization of InAs/GaAs strained-layer superlattices”, Appl. Phys. Lett., vol. 47, pp. 1099–1101.

    Article  ADS  Google Scholar 

  2. Eaglesham D. J. and Cerullo M. (1990), “Dislocation-free Stranski-Krastanov growth of Ge on Si(100)”, Phys. Rev. Lett., vol. 64, pp. 1943–1946.

    Article  ADS  Google Scholar 

  3. Schittenbelm P., Gail M., Brunner J., Nützel J.F. and Abstreiter G. (1995), “Photoluminescence study of the crossover from two-dimensional to three-dimensional growth for Ge on Si(100)”, Appl. Phys. Lett., vol. 67, p. 1292–1294.

    Article  ADS  Google Scholar 

  4. Sunamura H., Usami N., Shiraki Y., and Fukatsu S. (1995), “Island formation during growth of Ge on Si(100): A study using photoluminescence spectroscopy”, Appl. Phys. Lett., vol. 66, pp. 3024–3026.

    Article  ADS  Google Scholar 

  5. Goryll M., Vescan L., Schmidt K., Mesters S., Lüth H., and Szot K. (1997), “Size distribution of Ge islands grown on Si(001)”, Appl. Phys. Lett., vol. 71, pp. 410–412.

    Article  ADS  Google Scholar 

  6. Le Thanh V. (2001), New insight into the kinetics of Stranski-Krastanov growth of Ge on Si(001), Surface Science, vol. 492, pp. 255–269.

    Article  ADS  Google Scholar 

  7. Tezuka T. and Sugiyama N. (1998), “Two types of growth mode for Ge clusters on Si(100) substrate with and without atomic hydrogen exposure prior to the growth”, J. Appl. Phys., vol. 83, pp. 5239–5243.

    Article  ADS  Google Scholar 

  8. Shklyaev A.A., Shibata M., and Ichikawa M. (1998), “Instability of two-dimensional layers in the Stranski-Krastanov growth mode of Ge on Si(111)”, Phys. Rev., vol. B58, pp. 15647–15651.

    ADS  Google Scholar 

  9. Craciun V., Boyd W., Reader A.H., and Vanderhoudt D.E.W. (1994), “Low temperature synthesis of Ge nanocrystals in SiO2, Appl. Phys. Lett., vol. 65, pp. 3233–3235.

    Article  ADS  Google Scholar 

  10. Maeda Y. (1995), “Visible photoluminescence from nanocrystallite Ge embedded in a glassy SiO2 matrix: Evidence in support of the quantum-confinement mechanism” Phys. Rev. vol. B51, pp. 1658–1670.

    ADS  Google Scholar 

  11. Dietrich B., Bugiel E., Klatt J., Lippert G., Morgenstern T., Osten H.J., and Zaumseil P. (1993), “Measurement of stress and relaxation in Si1−-xGex layers by Raman line shift and X-ray diffraction”, J. Appl. Phys., vol. 74, pp. 3177–3180.

    Article  ADS  Google Scholar 

  12. Jiang Z.M., Pei C.W., Zhou X.F., Jiang W.R., Shi B., Liu X.H., Wang X., Jia Q.J., Zheng W.L., and Jiang X.M. (1999), “Study of strain in partially relaxed Ge epilayers on Si(100) substrate”, Appl. Phys. Lett., vol. 75, pp. 370–372.

    Article  ADS  Google Scholar 

  13. Kwok S.H., Yu P.Y., Tung C.H., Zhang Y.H., Li M.F., Peng C.S. and Zhou J.M. (1999), “Confinement and electron-phonon interactions of the E1 exciton in self-organising Ge quantum dots”, Phys. Rev., vol. B59, pp. 4980–4984.

    ADS  Google Scholar 

  14. Kolobov A.V., Tanaka K. (1999), “Comment on Raman scattering from self-organised Ge dot superlattice”, Appl. Phys. Lett., vol. 75, pp. 3572–3573.

    Article  ADS  Google Scholar 

  15. Liu J.L., Tang Y.S. and Wang K.L. (1999), “Response to comment on Raman scattering from a self-organised Ge dot superlattice”, Appl. Phys. Lett., vol. 75 pp. 3574–3575.

    Article  ADS  Google Scholar 

  16. Kolobov A.V. (2000), “Raman scattering from Ge nanostructures grown on Si substrates: Power and limitations”, J. Appl. Phys., vol. 87, pp. 2926–2930.

    Article  ADS  Google Scholar 

  17. Uchinokura K., Sekine T. and Matsuura E. (1974), “Critical-point analysis of the two-phonon Raman spectrum of silicon”, J. Phys. Chem. Solids, vol. 35, pp. 171–180.

    Article  ADS  Google Scholar 

  18. Teo K.L., Qin L., Noordin I.M., Karunasiri G., Shen Z.X., Schmidt O.G., Eberl K., and Queisser H.J. (2001), Effects of hydrostatic pressure on Raman scattering in Ge quantum dots”, Phys Rev., vol. B63, p. 121306/1–121306/4.

    ADS  Google Scholar 

  19. Baranov A.V., Perova T.S., Yam V., Le Thanh V., Bouchier D., Solosin S. and Moore R.A. (2003), “Polarized Raman spectroscopy of multilayers Ge/Si(001) quantum dots heterostructures”, E-MRS Spring meeting, 10–13 June, Strasbourg, p. D-18.

    Google Scholar 

  20. Le Thanh V., Bouchier D., and Débarre D. (1997), “Fabrication of SiGe quantum dots on a Si(100) surface”, Phys. Rev. vol. B 56, pp. 10505–10510.

    Google Scholar 

  21. Le Thanh V., Yam V., Boucaud P., Fortuna F., Ulysse C., Bouchier D., Vervoort L. and Lourtioz J.-M. (1999), “Vertically self-organized Ge/Si(001) quantum dots in multilayer structures”, Phys. Rev., vol. B60, pp. 5851–5857.

    ADS  Google Scholar 

  22. Le Thanh V., Boucaud P., Débarre D., Zheng Y., Bouchier D., and Lourtioz J.-M. (1998), “Nucleation and growth of self-assembled Ge/Si(001) quantum dots”, Phys. Rev., vol. B58, pp. 13115–13120.

    ADS  Google Scholar 

  23. Le Thanh V. (2003), in Physics, Chemistry and Application of Nanostructures, Edd. by V.E. Borisenko, S.V. Gaponenko, V.S. Gurin, World Scientific, Singapore, pp. 447–459.

    Google Scholar 

  24. Wright G.B. and Mooradin A. (1967), “Raman scattering from donor and acceptor impurities in silicon”, Phys. Rev. Lett., vol. 18, pp. 608–611.

    Article  ADS  Google Scholar 

  25. Greoenen J., Carles R., Christiansen S., Albercht M., Dorsch W., Strunk H.P., Wawra H. and Wagner G. (1997), “Phonons as probes in self-organized SiGe islands”, Appl. Phys. Lett., vol. 71, pp. 3856–3858.

    Article  ADS  Google Scholar 

  26. Magidson V., Regelman D.V., Beserman R., Dettmer K. (1998), “Evidence of Si presence in self-assembled Ge islands deposited on a Si(001) substrate”, Appl. Phys. Lett., vol. 73, pp. 1044–1046.

    Article  ADS  Google Scholar 

  27. Shrorer R., Abstreiter G., Gironcoli S., Molinari E., Kibbel H. and Presting H. (1994), “In-plane Raman scattering of (001)-Si/Ge superlattices: Theory and experiment”, Phys. Rev., vol. B49, pp. 5406–5414.

    ADS  Google Scholar 

  28. Patriarche G., Sagnes I., Boucaud P., Le Thanh V., Bouchier D., Hernandez C., Campidelli Y., and Bensahel D. (2000), “Strain and composition of capped Ge/Si self-assembled quantum dots grown by chemical vapor deposition”, Appl. Phys. Lett., vol. 77, pp. 370–372.

    Article  ADS  Google Scholar 

  29. Boscherini F., Capellini G., Di Caspare L., Rosei F., Motta N. and Mobilio S. (2000), “Ge-Si intermixing in Ge quantum dots on Si(001) and Si(111)”, Appl. Phys. Lett., vol. 76, pp. 682–684.

    Article  ADS  Google Scholar 

  30. Kolobov A.V., Oyanagi H., Wei S., Brunner K., Abstreiter G. and Tanaka K. (2002), “Local structure of Ge quantum dots self-assembled on Si(100) probed by X-ray absorption fine-structure spectroscopy”, Phys. Rev., vol. B66, pp. 075319/1–075319/6.

    ADS  Google Scholar 

  31. Mooney P.M., Dacol F.H., Tsang J.C. and Chu J.O. (1993), “Raman scattering analysis of relaxed GexSi1−x alloy layers”, Appl. Phys. lett., vol. 62, pp. 2069–2071.

    Article  ADS  Google Scholar 

  32. Bottani C.E., Mantini C., Milani P., Manfredini M., Stella A., Toghini P., Cheyssac P. and Kofman R. (1996), “Raman, optical-absorption, and transmission electron microscopy study of size effects in germanium quantum dots”, Appl. Phys. Lett., vol. 69, pp. 2409–2411.

    Article  ADS  Google Scholar 

  33. Kanakaraju S., Sood A.K., Mohan S. (1998), “In situ Raman monitoring of ultrathin Ge films”, J. Appl. Phys., vol. 84, pp. 5756–5760.

    Article  ADS  Google Scholar 

  34. Tsang J.C., Mooney P.M., Dacol F., Chu J.O. (1994), “Measurements of alloy composition and strain in thin GexSi1−x layers”, J. Appl. Phys., vol. 75, pp. 8098–8108.

    Article  ADS  Google Scholar 

  35. Markov V.A., Cheng H.H., Chia C., Nikiforov A.I., Cherepanov V.A., Pchelyakov O.P., Zhuravlev K.S., Talochkin A.B., McGlynn E., Henry M.O. (2000), RHEED studies of nucleation of Ge islands on Si(001) and optical properties of ultra-small Ge quantum dots”, Thin Solid Films, vol. 369, pp. 79–83.

    Article  ADS  Google Scholar 

  36. Talochkin A.B. Markov V.A., Suprun S.P., Nikiforov A.I. (1996), “Raman scattering on optical phonons in Si-Ge-Si structures with quantum dots”, Pis’ma Zh. Eksp. Teor. Fiz. (JETP Letters), vol. 64, pp. 203–207.

    Google Scholar 

  37. Darhuber A.A., Grill T., Stangl J., Bauer C., Lockwood D.J., Noël J.-P., Wang P.D. and Sotomayor Torres C.M. (1998), “Elastic relaxation of dry-etched Si/SiGe quantum dots”, Phys. Rev., vol. B58, pp. 4825–4831.

    ADS  Google Scholar 

  38. Liu T.L., Tang Y.S., Wang K.L., Radetic T. and Gronsky R. (1999), “Raman scaterring from a self-organised Ge dot superlattice”, Appl. Phys. Lett., vol. 74, pp. 1863–1865.

    Article  ADS  Google Scholar 

  39. T.L. Liu, Wu W.G., Balandin A., Jin G., Luo Y.H., Thomas S.G., Lu Y. and Wang K.L. (1999), Appl. Phys. Lett., vol. 75, pp. 1745–1747.

    Article  ADS  Google Scholar 

  40. Liu T.L., Jin G., Tang Y.H., Luo Y.H. and Wang K.L. (2000), “Optical and acoustic phonon modes in self-organized Ge quantum dot superlattices”, Appl. Phys. Lett., vol. 76, pp. 586–588.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Baranov, A.V. et al. (2004). Polarized Raman Spectroscopy of Single Layer and Multilayer Ge/Si(001) Quantum Dot Heterostructures. In: Buzaneva, E., Scharff, P. (eds) Frontiers of Multifunctional Integrated Nanosystems. NATO Science Series II: Mathematics, Physics and Chemistry, vol 152. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2173-9_14

Download citation

Publish with us

Policies and ethics