Skip to main content

Oriented Immobilization of C-Reactive Protein on Solid Surface for Biosensor Applications

  • Conference paper
Frontiers of Multifunctional Integrated Nanosystems

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 152))

Abstract

An attempt of surface modification with receptor layers to achieve a maximal signal from antigen-antibody interaction on the solid surface has been undertaken. Interaction of C-reactive protein (CRP) with monoclonal anti-CRP has been investigated by comparative study by chemical cross-linking or electrostatic interaction in the framework of Layer-by-Layer approach. The processes of gold surface modification have been monitored by a wavelength interrogation-based surface plasmon resonance (SPR) sensor. Atomic force microscopy has been used for visualization of the surfaces modified with protein layers. The influence of biotinylated protein G-streptavidin (bPG/STV) complex on the SPR signal shift by antigen-antibody interaction has been studied. The influence of different cross-linking chemicals, such as di(N-succinimidyl)-3,3′-dithiodipropionate, 3-(2-pyridyldithio)-propionic acid N-hydroxysuccinimide ester, and N-hydroxysuccinimide/N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide on antigen immobilization of anti-CRP/bPG/STV system has been also examined. The film morphology of the first immobilized layer is very important for protein interactions. Maximum SPR-shift by CRP coupling with anti-CRP has been observed on the surface modified by streptavidin and di(N-succinimidyl)-3,3′-dithiodipropionate. AFM method can be used to directly monitor CRP/anti-CRP interaction on polyelectrolyte support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weimar, T. (2000), Recent trends in the application of evanescent wave biosensors, Angew. Chem. Int. Ed. Engl., Vol. 39, pp. 1219–1221.

    Article  Google Scholar 

  2. Hiroyuki, S.; Yukio, H.; Masahiro, I. (1998), Detection of conformational changes in an immobilized protein using surface plasmon resonance, Anal. Chem., Vol. 70, pp. 2019–2024.

    Article  Google Scholar 

  3. Yang, P. R.; Wang, E. (2001), Enhanced surface plasmon resonance immunosensing using a streptavidin-biotinylated protein complex, Analyst, Vol. 126, pp. 4–6.

    Article  ADS  Google Scholar 

  4. Lyon, L.A.; Musick, M.D.; Natan, M.J. (1998), Colloidal Au-enhanced surface plasmon resonance immunosensing, Anal.Chem., Vol. 70, pp. 5177–5183.

    Article  Google Scholar 

  5. Rickert, J.; Brecht, A.; Gopel, W. (1997), Quartz crystal microbalances for quantitative biosensing and characterizing protein multilayers. Biosens. Bioelectron, Vol. 12, pp. 567–575.

    Article  Google Scholar 

  6. Berggren, C.; Johansson, G. (1997), Capacitance measurements of antibody-antigen interactions in a flow system. Anal. Chem., Vol. 69, pp. 3651–3657.

    Article  Google Scholar 

  7. Malmqvist, M. 1993, Biospecific interaction analysis using biosensor technology, Nature, Vol. 361, pp. 186–187

    Article  ADS  Google Scholar 

  8. Yi, S.J.; Yuk, J.S.; Jung, S.H.; Zhavnerko G.K.; Kim, Y.M.; Ha, K.S. 2003, Investigation of Selective Protein Immobilization on Charged Protein Array by SPR Wavelength-shift Sensor Mol. Cells, in press.

    Google Scholar 

  9. Scheller, G.; Schubert, F.; Pfeiffer, D.; Wollenberger, U.; Riedel, K.; Pavlova, M.; Kuhn, M.; Muller, H.G.; Tan, P.M.; Hoffmann, W.; Moritz, W. 1989, Research and development of biosensors. A review., Analyst, Vol. 114, pp. 653–662.

    Article  ADS  Google Scholar 

  10. Madou, M.; Florkey, J. (2000), From batch to continuous manufacturing of microbiomedical devices, Chem. Rev., Vol. 100, pp. 2679–2692.

    Article  Google Scholar 

  11. W.S. Tillet, T. Francis, (1930), J. Exp. Med., Vol. 52, pp. 561–571.

    Article  Google Scholar 

  12. I. Kushner, (1982), Ann. New York Acad. Sci., Vol. 389, pp. 1157–1165.

    Google Scholar 

  13. H. Gewurz, C. Mold, J. Siegel, B. Fiedel, (1982), Adv. Int. Med., Vol. 27, pp. 345–372.

    Google Scholar 

  14. Szalai, A.J., Briles, D.E., Volanakis, J.E., (1995), Human C-reactive protein is protective against fatal Streptococcus pneumoniae infection in transgenic mice, J. Immunol., Vol. 155, pp. 2557–2563.

    Google Scholar 

  15. Weiser, J.N., Pan, N., McGowan, K.L., Musher, D., Martin, A., Richards, J., (1998), Phosphorylcholine on the lipopolysaccha-ride of Haemophilus influenzae contributes to persistence in the respiratory tract and sensitivity to serum killing mediated by C-reactive protein, J. Exp. Med., Vol. 187, pp. 631–640.

    Article  Google Scholar 

  16. Du Clos, T.W., (1996), The interaction of C-reactive protein and serum amyloid P component with nuclear antigens, Mol. Biol. Rep., Vol. 23, pp. 253–260.

    Article  Google Scholar 

  17. Kushner, I., Kaplan, M.H., (1961), Studies of acute-phase protein. I. An immunohistochemical method for the localization of Cx-reactive protein in rabbits. Association with necrosis in local inflammatory lesions, J. Exp. Med., Vol. 114, 961–974.

    Article  Google Scholar 

  18. Moulin, A.M.; O’Shea, S.J.; Badley, R.A.; Doyle, P.; Welland, M.E. (1999), Measuring surface-induced conformational changes in proteins, Langmuir, Vol. 15, pp. 8776–8779.

    Article  Google Scholar 

  19. Ostuni, E.; Chapman, R.G.; Holmlin, R.E.; Takayama, S.; Whitesides, G.M. (2001), A survey of structurem property relationships of surfaces that resist the adsorption of protein. Langmuir, Vol. 17, pp. 5605–5620.

    Article  Google Scholar 

  20. Chan, V.; Graves, D.J.; Fortina, P.; McKenzie, S.E. (1997), Adsorption and surface diffusion of DNA oligonucleotides at liquid/solid interfaces, Langmuir, Vol. 13, pp. 320–329.

    Article  Google Scholar 

  21. Yang, M.; Yau, H.C.M.; Chan, H.L. (1998), Adsorption kinetics and ligand-binding properties of thiol-modified double-stranded DNA on a gold surface, Langmuir, Vol. 14, pp. 6120–6129.

    Google Scholar 

  22. Zhdanov, V.P.; Kasemo, B. (2001), Van der Waals interaction during protein adsorption on a solid covered by a thin film, Langmuir, Vol. 17, pp. 5407–5409.

    Article  Google Scholar 

  23. Seeger, S.; Bierbaum, K.; Dahint, R.; Feng, C.L.; Mantar, M.; Grunze, M. In Synthetic Microstructures in Biological Research; Schnur, M., Ed.; Plenum Press: New York, 1992; pp. 53–65.

    Google Scholar 

  24. Nassar, A.E.; Russling, J.F.; Nakashima, N. (1996), Electron transfer between electrodes and heme proteins in protein-DNA films, J. Am. Chem. Soc., Vol. 118, pp. 3043–3044.

    Article  Google Scholar 

  25. Palmer, D.A.; French, M.T.; Miller, J.N. (1994), Use of protein A as an immunological reagent and its application using flow injection, a review, Analyst, Vol. 119, 2769–2776.

    Article  ADS  Google Scholar 

  26. Decher, G. F. (1997), Nanoassemblies: Toward layered polymeric multicomposites, Science, Vol. 277, pp. 1232–1237.

    Article  Google Scholar 

  27. Caruso, F.; Niikura, K.; Furlong, D.N.; Okahata, Y. (1997), Assembly of alternating polyelectrolyte and protein multilayer films for immunosensing, Langmuir, Vol. 13, pp. 3427–3433.

    Article  Google Scholar 

  28. Onda, M.; Lvov, Y.; Ariga, K.; Kunitake, T. (1996), Sequential actions of glucose oxidase and peroxidase in molecular films assembled by layer-by-layer alternate adsorption. Biotech. Bioeng., Vol. 51, pp. 163–167.

    Article  Google Scholar 

  29. Lvov, Y.; Flaas, H.; Decher, G.; et al. (1994), Successive deposition of alternate layers of polyelectrolytes and a charged virus, Langmuir, Vol. 10, pp. 4232–4236.

    Article  Google Scholar 

  30. Zhavnerko, G.K.; Ha, K.-S.; Yi, S.-J.; Kweon, S.-M. Layer-by-Layer method for immobilization of protein molecules on biochip surfaces, NATO book series; Frontiers of Multifunctional Nanosystems, Editor(s): E. Buzaneva and P. Scharff, Kluwer Academic Publishers, 2002, 79–90.

    Google Scholar 

  31. Lang, H.; Duschl, C.; Vogel, H. (1994), A new class of thiolipids for the attachment of lipid bilayers on gold surfaces, Langmuir, Vol. 10, pp. 197–210.

    Article  Google Scholar 

  32. Ulman, A. (1996), Formation and structure of self-assembled monolayers, Chem. Rev., Vol. 96, pp. 1533–1554.

    Article  Google Scholar 

  33. Mirsky, V.M.; Riepl, M.; Wolfbeis, O.S., (1997), Capacitive monitoring of protein immobilization and antigen-antibody reactions on monomolecular alkylthiol films on gold electrodes. Biosensors and Bioelectronics, Vol. 12, 977–989.

    Article  Google Scholar 

  34. Prime, K.; Whitesides, G.M., (1991), Self-assembled organic monolayers: model systems for studying adsorption of proteins at surfaces, Science, Vol. 252, pp. 1164–1167.

    Article  ADS  Google Scholar 

  35. Wagner, P.; Kernen, P.; Hegner, M.; Ungewickell, E.; Semenza, G. (1994), Covalent anchoring of proteins onto gold-directed NHS-terminated self-assembled monolayers in aqueous buffers: SFM images of clathrin cages and triskelia, FEBS Lett,. Vol. 356, pp. 267–271.

    Article  Google Scholar 

  36. Sehgal, D.; Vijay, I.K. (1994), A method for the high efficiency of water-soluble carbodiimide-mediated amidation, Anal. Biochem., Vol. 218, pp. 87–91.

    Article  Google Scholar 

  37. Lu, B.; Smyth, M.R.; O’Kennedy, R. (1996), Oriented immobilization of antibodies and its applications in immunoassays and immunosensors, Analyst, Vol. 121, 29R–32R.

    Article  ADS  Google Scholar 

  38. Kanno, S.; Yanagida, Y.; Haruyama, T.; Kobatake, E.; Aizawa, M. (2000), Assembling of engineered IgG-binding protein on gold surface for highly oriented antibody immobilization, J. Biotechnol., Vol. 76, pp. 207–214.

    Article  Google Scholar 

  39. Ng, K.; Pack, D.W.; Sasaki, D.Y.; Arnold, F.M. (1995), Engineering protein-lipid interactions: targeting of histidine-tagged proteins to metal-chelating lipid monolayers, Langmuir, Vol. 11, pp. 4048–4055.

    Article  Google Scholar 

  40. Karyakin, A.A., Presnova, G.V., Rubtsova, M.Y., Egorov, A.M. (2000), Oriented immobilization of antibodies onto the gold surfaces via their native thiol groups, Anal. Chem., Vol. 72, pp. 3805–3811.

    Article  Google Scholar 

  41. Turkova, J. (1999), Oriented immobilization of biologically active proteins as a tool for revealing protein interactions and function, J. Chromatogr. B. Vol. 722, pp. 11–31.

    Article  Google Scholar 

  42. Green N.M. Avidin. In: Anfinsen CB, Edsall JT, Richards FM, editors. Advances in protein chemistry. Vol. 29. New York: Academic Press, 1975. pp. 85–121.

    Google Scholar 

  43. Sano T, Cantor CR. (1991), Expression vectors for streptavidin-containing chimeric protein, Biochim Biophys Res Commun., Vol. 176, pp. 571–577.

    Article  Google Scholar 

  44. Darst, S.A.; Ahlers, M.; Meller, P.H.; Kubalek; E.W.; Blankenburg, R.; Ribi, H.O.; Ringsdorf, H.; Kornberg, R.D., (1991), Two-dimensional crystals of streptavidin on biotinylated lipid layers and their interactions with biotinylated macromolecules, Biophys. J., Vol. 59, pp. 387–396.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Zhavnerko, G.K., Yi, S.J., Chung, S.H., Yuk, J.S., Ha, K.S. (2004). Oriented Immobilization of C-Reactive Protein on Solid Surface for Biosensor Applications. In: Buzaneva, E., Scharff, P. (eds) Frontiers of Multifunctional Integrated Nanosystems. NATO Science Series II: Mathematics, Physics and Chemistry, vol 152. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2173-9_10

Download citation

Publish with us

Policies and ethics