Skip to main content

Optical Properties of Small-Radius SWNTs within a Tight-Binding Model

  • Conference paper
Frontiers of Multifunctional Integrated Nanosystems

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 152))

  • 887 Accesses

Abstract

The optical properties of single-walled carbon nanotubes (SWNTs) are studied within a symmetry-adapted density-functional-theory-based non-orthogonal tight-binding model using 2s and 2p electrons of carbon. The use of symmetry-adapted model for the calculation of the electronic band structure and the optical properties allows reducing significantly the size of the matrix electronic eigenvalue problem. Consequently, it could be possible to do these calculations for all 48 SWNTs with radii between 2 Å and 5 Å. The obtained band structures for several nanotube types agree well with ab-initio results up to ∼ 3.5 eV above the Fermi energy. Similarly to the ab-initio calculations, the tight-binding model predicts deviations from the predictions of the band structure within the zone-folding method. It is demonstrated that, e.g., nanotube (5,0) is metallic while the zone-folding method predicts it as semiconducting. Secondly, the dielectric function for the same nanotube types is calculated within the random phase approximation for energies up to 7 eV. The peak positions of the imaginary part of the dielectric function for parallel light polarisation versus nanotube radius are illustrated on a chart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Iijima, Nature (London) 354, 56 (1991).

    Article  ADS  Google Scholar 

  2. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of fullerenes and carbon nanotubes (Academic Press, New York, 1996).

    Google Scholar 

  3. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical properties of carbon nanotubes (Imperial College Press, London, 1998).

    Book  Google Scholar 

  4. Carbon nanotubes: Synthesis, Structure, Properties, and Applications, edited by M. S. Dresselhaus, G. Dresselhaus, and Ph. Avouris (Springer-Verlag, Berlin, 2001).

    Google Scholar 

  5. R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Electronic structure of graphene tubules based on C60, Phys. Rev. B 45, 6234 (1992).

    Google Scholar 

  6. H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, Optical properties of single-wall carbon nanotubes, Synth. Metals 103, 2555 (1999).

    Article  Google Scholar 

  7. A. Hagen and T. Hertel, Quantitative Analysis of optical spectra from individual single-wall carbon nanotubes, Nano Letters 3, 383 (2003).

    Article  ADS  Google Scholar 

  8. N. Hamada, S. Sawada, and A. Oshiyama, New one-dimensional conductors: graphitic microtubules, Phys. Rev. Lett. 68, 1579 (1992).

    Article  ADS  Google Scholar 

  9. J. W. Mintmire, B. I. Dunlap and C. T. White, Are fullerene tubules metallic? Phys. Rev. Lett. 68, 631 (1992).

    Article  ADS  Google Scholar 

  10. X. Blase, L. X. Benedict, E. L. Shirley, and S. G. Louie, Hybridization effects and metallicity in small radius carbon nanotubes, Phys. Rev. Lett. 72, 1878 (1994).

    Article  ADS  Google Scholar 

  11. J.-C. Charlier, Ph. Lambin, and T. W. Ebbesen, Electronic properties of carbon nanotubes with polygonized cross section, Phys. Rev. B 54, R8377 (1996).

    ADS  Google Scholar 

  12. S. Reich, C. Thomsen, and P. Ordejón, Electronic band structure of isolated and bundled carbon nanotubes, Phys. Rev. B 65, 155411 (2002).

    ADS  Google Scholar 

  13. H. Ajiki and T. Ando, Aharonov-Bohm effect in carbon nanotubes, Physica B 201, 349 (1994).

    ADS  Google Scholar 

  14. M. F. Lin and K. W.-K. Shung, Plasmons and optical properties of carbon nanotubes, Phys. Rev. B 50, 17744 (1994)

    ADS  Google Scholar 

  15. S. Tasaki, K. Maekawa, and T. Yamabe, π-band contribution to the optical properties of carbon nanotubes: effect of chirality, Phys. Rev. B 57, 9301 (1998).

    ADS  Google Scholar 

  16. I. Miloševi, T. Vukovi, S. Dmitrovi, and M. Damnjanovi, Polarized optical absorption in carbon nanotubes: a symmetry-based approach, Phys. Rev. B 67, 165418 (2003).

    ADS  Google Scholar 

  17. J. W. Mintmire and C. T. White, Electronic structure simulations of carbon nanotubes, Synth. Metals 77, 231 (1996).

    Article  Google Scholar 

  18. Z. M. Li, Z. K. Tang, H. J. Liu, N. Wang, C. T. Chan, R. Saito, S. Okada, G. D. Li, J. S. Chen, N. Nagasawa, and S. Tsuda, Polarized absorption spectra of single-walled 4 Å carbon nanotubes aligned in channels of an AlPO4-5 single crystal, Phys. Rev. Lett. 87, 121401 (2001).

    Google Scholar 

  19. M. Machón, S. Reich, C. Thomsen, D. Sánchez-Portal, and P. Ordejón, Ab-initio calculations of the optical properties of 4-Å-diameter single-walled nanotubes, Phys. Rev. B 66, 155410 (2002).

    ADS  Google Scholar 

  20. V. N. Popov, V. E. Van Doren, and M. Balkanski, Lattice dynamics of single-walled carbon nanotubes, Phys. Rev. B 59, 8355 (1999); V. N. Popov, V. E. Van Doren, and M. Balkanski, Elastic properties of single-walled carbon nanotubes, Phys. Rev. B 60, 3078 (2000).

    ADS  Google Scholar 

  21. D. H. Robertson, D. W. Brenner, and J. W. Mintmire, Energetics of nanoscale graphitic tubules, Phys. Rev. B 45, 12592 (1992).

    ADS  Google Scholar 

  22. H. Ehrenreich and M. H. Cohen, Self-consistent field approach to the many-electron problem, Phys. Rev. 115, 786 (1959).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. D. Porezag, Th. Frauenheim, and Th. Köhler, Construction of tight-binding-like potentials on the basis of density-functional theory: application to carbon, Phys. Rev. B 51, 12947 (1995).

    ADS  Google Scholar 

  24. A. Jorio, M. A. Pimenta, A. G. Souza Filho, Ge. G. Samsonidze, A. K. Swan, M. S. Ünlū, B. B. Goldberg, R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Resonance Raman spectra of carbon nanotubes by cross-polarized light, Phys. Rev. Lett. 90, 107403 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Popov, V.N. (2004). Optical Properties of Small-Radius SWNTs within a Tight-Binding Model. In: Buzaneva, E., Scharff, P. (eds) Frontiers of Multifunctional Integrated Nanosystems. NATO Science Series II: Mathematics, Physics and Chemistry, vol 152. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2173-9_1

Download citation

Publish with us

Policies and ethics