Skip to main content

Time-Dependent Wavepacket Calculations for Reactive Scattering and Photodissociation

  • Conference paper
Theory of Chemical Reaction Dynamics

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 145))

  • 1266 Accesses

Abstract

The theory of time-dependent wavepaeket calculations of reactive scattering and photodissociation is briefly reviewed and some illustrative results presented. Particular attention will be paid to the theory of differential scattering cross sections, arising from both types of process, and to the symmetry of angular dependent scattering in a photodissociation process. Electronically non-adiabatic processes will be discussed and illustrations from the reactive scattering of O(1D) + H2 and from the photodissociation of HF are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holler, E.J. (1978) Quantum corrections to clasical photodissociation models, J. Chem. Phys. 68, 2066–2075.

    Google Scholar 

  2. Kulander, K.C. and Heller. E.J. (1978) Time-dependent formulation of polyatomic photofragmentation: Application to H 3+ , J. Chem. Phys. 69, 2439–2449.

    CAS  Google Scholar 

  3. Heller, E.J. (1981) A semiclassical way to molecular spectroscopy, Acc. Chem. Res. 14, 368–375.

    CAS  Google Scholar 

  4. Balint-Kurti, G.G. (1975) The theory of rotationally inelastic collisions, in A.D. Buckingham and C.A. Coulson (eds.), International Review of Science, Series II, Vol 1, Butterworths, London, pp.286–326.

    Google Scholar 

  5. R. Kosloff, R. (1988) Time-dependent quantum-mechanical methods for molecular dynamics, J. Phys. Chem. 92, 2087–2100.

    Google Scholar 

  6. Kosloff, D. and Kosloff, R. (1983) A Fourier method solution for the time-dependent Schrödinger equation as a tool in molecular-dynamics, J. Comput. Phys. 52. 35–53.

    Article  CAS  Google Scholar 

  7. Tal-Ezor, H. and Kosloff, R. (1984) An accurate and efficient scheme for propagating the time-dependent Schrödinger equation., J. Chem. Phys. 81, 3967–3971.

    Google Scholar 

  8. Kosloff, R. and Kosloff, D. (1986) Absorbing boundaries for wave-propagation problems, J. Comput. Phys. 63, 363–376.

    Article  Google Scholar 

  9. Imre, D., Kinsey, J.L., Sinha, A., and Krenos, J. (1984) Chemical dynamics studied by emission spectroscopy of dissociating molecules, J. Phys. Chem. 88, 3956–3964.

    Article  CAS  Google Scholar 

  10. Untch, A., Weide, K., and Schinke, R. (1985) The direct photodissociation of CINO(S1): An exact three-dimensional wave packet analysis, J. Chem. Phys. 95, 6496–6507.

    Google Scholar 

  11. Dixon, R.N., Marston, C.C., and Balint-Kurti, G.G. (1990) Photodissociation dynamics and emission spectroscopy of H2S in its first absorption band: A time dependent quantum mechanical study, J. Chem. Phys. 93, 6520–6534.

    Article  CAS  Google Scholar 

  12. Le Quéré, F. and Leforestier, C. (1991) Hyperspherical formulation of the photodissociation of ozone, J. Chem. Phys. 94, 1118–1126.

    Google Scholar 

  13. Neuhauser, D., Baer, M., Judson, R..S. and Kouri, D.J. (1989) Time-dependent three-dimensional body frame quantal wave packet treatment of the H + H2 exchange reaction on the Liu-Siegbahn-Truhlar-Horowitz (LSTH) surface, J. Chem. Phys. 90, 5882–5884.

    Article  CAS  Google Scholar 

  14. Neuhauser, D., Baer, M., Judson, R.S. and Kouri, D.J. (1990) Time-dependent (wavepacket) quantum approach to reactive scattering: Vibrationally resolved reaction probabilities for F + H2 → HF + H, Chem. Phys. Lett. 169, 372–379.

    Article  CAS  Google Scholar 

  15. Gögtas, F., Balint-Kurti, G.G. and Offer, A.R. (1996) Quantum mechanical three-dimensional wavepacket study of the Li + HF → LiF + H reaction, J. Chem. Phys. 104, 7927–7939.

    Google Scholar 

  16. Gray, S.K. and Wozny, C.E. (1991) Fragmentation mechanisms from three-dimensional wave packet studies: Vibrational predissoeiation of NeCl2. HcCl2. Nc-ICl, and HeICl, J. Chem. Phys. 94, 2817–2832.

    Article  CAS  Google Scholar 

  17. Gray, S.K. (1992) Wavepacket dynamics of resonance decay: An iterative equation approach with application to HCO → H + CO, J. Chem. Phys. 96, 6543–6554.

    Article  CAS  Google Scholar 

  18. Guo, H. (1993) Time-dependent quantum dynamical study of the photodissociation of hypochlorous acid, J. Phys. Chem. 97, 2602–2608.

    Article  CAS  Google Scholar 

  19. Xu, D.G., Xie, D.Q. and Guo, H. (2002) Theoretical study of HCN/DCN in their first absorption bands, J. Chem. Phys. 116, 10626–10635.

    CAS  Google Scholar 

  20. Woywod, C., Stengle, M., Domcke, W., Flothmann, H. and Schinke, R. (1997) Photodissociation of ozone in the Chappuis band. I. Electronic structure calculations, J. Chem. Phys. 107, 7282–7295.

    Article  CAS  Google Scholar 

  21. Flothmann, H., Beck, C., Schinke, R., Woywod. C. and Domcke, W. (1997) Photodissociation of ozone in the Chappuis band. II. Time-dependent wave-packet calculations and interpretation of diffuse vibrational structures, J. Chem. Phys. 107, 7296–7313.

    CAS  Google Scholar 

  22. Flothmann, H., Schinke, R., Woywod, C. and Domcke, W. (1998) Photodissociation of ozone in the Chappuis band. III. Product state distributions. J. Chem. Phys. 109. 2680–2684.

    CAS  Google Scholar 

  23. Fillion, J.H., van Harrevelt, R., Ruiz, J., Castillejo, N., A.H. Zanganeh, A.H., J.L. Lemaire, J.L., M.C. van Hemert, M.C. and F. Rostas, F. (2001) Photodissociation of H2O and D2O in the \( \tilde B,\tilde C,\) and \( \tilde D\) states (134–119 nm). Comparison between experiment and ab initio calculations, J. Phys. Chem. A 105, 11414–11424.

    Article  CAS  Google Scholar 

  24. Harich. S.A., Yang, X.F., Yang, X, van Harrevelt, R. and van Hemert, M.C. (2001) Single rotational product propensity in the photodissociation of HOD. Phys. Rev. Lett. 87, 263001-1–263001-4.

    Google Scholar 

  25. van Harrevelt, R. and van Hemert, M.C. (2001) Photodissociation of water in the à band revisited with new potential energy surfaces, J. Chem. Phys. 114, 9453–9462.

    Google Scholar 

  26. Dixon, R.N., Hwang, D.W., Yang, X.F., Harich, S.A., Lin, J.J. and Yang, X.M. (1999) Chemical “double slits”: Dynamical interference of photodissociation pathways in water, Science 285, 1249–1253.

    Article  CAS  Google Scholar 

  27. Harich, S.A., Hwang, D.W.H., Yang, X.F., Lin, J.J., Yang, X.M. and Dixon, R.N. (2000) Photodissociation of H2O at 121.6 nm: A state-to-state dynamieal picture, J. Chem. Phys. 113, 10073–10090.

    Article  CAS  Google Scholar 

  28. Harich, S.A., Yang, X.F., Hwang, D.W.H., Lin, J.J., Yang, X.M. and Dixon, R.N. (2001) Photodissociation of D2O at 121.6 nm: A state-to-state dynamical picture, J. Chem. Phys. 114, 7830–7837.

    Article  CAS  Google Scholar 

  29. Kroes, G.J., van Hemert, M.C., Billing, G.D. and Neuhauser, D. (1997) Photodissociation of CH2. VI. Three-dimensional quantum dynamics of the dissociation through the coupled 2A“ and 3A” states, J. Chem. Phys. 107, 5757–5770.

    CAS  Google Scholar 

  30. Kosloff, R. and Cerjan, C. (1984) Dynamical atom/surface effects: Quantum mechanical scattering and desorption, J. Chem. Phys. 81, 3722–3729.

    Article  CAS  Google Scholar 

  31. Leforestier, C., Bisseling, R., Cerjan, C., Feit, M.D., Friesner, R., Guldberg, A., Hammerich, A., Jolicard, G., Karrlein, W., Meyer, H.-D., Lipkin, N., Roncero, O. and Kosloff, R. (1991) A comparison of different propagation schemes for the time-dependent Schrödinger equation, J. Comp. Phys. 94, 59–80.

    Google Scholar 

  32. Truong, T.N., Tanner, J.J., Bala, P., McCammon, J.A., Kouri, D.J., Lesyng, B. and Hoffman, D.K. (1992) A comparative study of time dependent quantum mechanical wave packet evolution methods, J. Chem. Phys. 96, 2077–2084.

    CAS  Google Scholar 

  33. Balint-Kurti, G.G., Wavepacket theory of photodissociation and reactive scattering, Adv. Chem. Phys., (in press).

    Google Scholar 

  34. Brown, A. and Balint-Kurti, G.G. (2000) Spin-orbit branching in the photodissociation of HF and DF. I. A time-dependent wave packet study for excitation from v =0, J. Chem. Phys. 113, 1870–1878.

    CAS  Google Scholar 

  35. Pauling, L. and Wilson, E.B. (1935) Introduction to Quantum Mechanics, McGraw-Hill, New York.

    Google Scholar 

  36. Herzberg, G. (1950) Molecular spectra and molecular structure, Vol. 1, Spectra of Diatomic molecules, Van Nostrand, Princeton.

    Google Scholar 

  37. Schiff, L.I. (1955) Quantum Mechanics, McGraw-Hill, New York.

    Google Scholar 

  38. Shapiro, M. and Bersohn, R. (1982) Theories of the dynamics of photodissociation, Ann. Rev. Phys. Chem. 33, 409–442.

    Article  CAS  Google Scholar 

  39. Balint-Kurti, G.G. and Shapiro, M. (1981) Photofragmentation of triatomic molecules: Theory of angular and state distribution of product fragments, Chem. Phys. 61, 137–155.

    Article  CAS  Google Scholar 

  40. Beswick, J.A. (1993) Molecular Photofragmentation, in G. Delgado-Barrio (ed.), Dynamical Processes in Molecular Physics, Institute of Physics Publishing, Bristol.

    Google Scholar 

  41. Balint-Kurti, G.G., Dixon, R.N. and Marston, C.C. (1992) Grid methods for solving the Schrödinger equation and time dependent quantum dynamics of molecular photofragmentation and reactive scattering processes, Internat. Rev. Phys. Chem. 11 317–344.

    CAS  Google Scholar 

  42. Levine, R.D. (1969) Quantum Mechanics of Molecular Rate Processes, Clarendon, Oxford.

    Google Scholar 

  43. Balint-Kurti, G.G., Füsti-Molár, L. and Brown, A. (2001) Photodissociation of HOBr: Part II. Calculation of photodissociation cross-sections and photofragment quantum state distributions for the first two UV absorption bands, Phys. Chem. Chem. Phys. 3, 702–710.

    Article  CAS  Google Scholar 

  44. Edmonds, A.R. (1960) Angular Momentum in Quantum Mechanics, Princeton University Press, Princeton.

    Google Scholar 

  45. Zare, R.N. (1988) Angular Momentum understanding spatial aspects in chemistry and physics, John Wiley and Sons New York.

    Google Scholar 

  46. Pe’er, A., Shapiro, M. and Balint-Kurti, G.G. (1999) The breaking of forwardbackward symmetry in the angular distribution of mj-selected photofragments, J. Chem. Phys. 110, 11928–11935.

    Google Scholar 

  47. Rama Krishna, M.V. and Coalson, R.D. (1988) Dynamic aspects of electronic exci tation, Chem. Phys. 120, 327–333.

    Article  Google Scholar 

  48. Meijer, A.J.H.M. and Goldfield, E.M. (2001) Time-dependent quantum mechanical calculations on H + O2 for total angular momentum J ¿ 0: Comparing different dynamical approximations, Phys. Chem. Chem. Phys. 3, 2811–2818.

    CAS  Google Scholar 

  49. Offer, A.R. and Balint-Kurti, G.G. (1994) Time-dependent quantum meachanical study of the photodissociation of HOCI and DOCI, J. Chem. Phys. 101, 10416–10428.

    Article  CAS  Google Scholar 

  50. Heller, E.J. (1978) Photofragmentation of symmetric triatomic molecules: Time dependent picture, J.Chem.Phys. 68, 3891–3896.

    CAS  Google Scholar 

  51. Sun, Y., and Kouri, D.J. (1988) Wave packet study of gas phase atom-rigid rotor scattering, J. Chem. Phys. 89, 2958–2964.

    CAS  Google Scholar 

  52. Sun, Y., Judson, R.S., and Kouri, D.J. (1989) Body frame close coupling wave packet approach to gas phase atom-rigid rotor inelastic collisions, J. Chem. Phys. 90, 241–250.

    Article  CAS  Google Scholar 

  53. Gray, S.K. and Wozny, C.E. (1989) Wave packet dynamics of van der Waals molecules: Fragmentation of NeCI2 with three degrees of freedom, J. Chem. Phys. 91, 7671–7684.

    CAS  Google Scholar 

  54. Weide, K., Kühl, K. and Schinke, R. (1989) Unstable periodic orbits, recurrences, and diffuse vibrational structures in the photodissociation of water near 128 nm, J. Chem. Phys. 91, 3999–4008.

    CAS  Google Scholar 

  55. Light, J.C., Hamilton, I.P. and Lill, V.J. (1985) Generalized discrete variable approximation in quantum meachnics, J. Chem. Phys. 82, 1400–1409.

    Article  CAS  Google Scholar 

  56. Balint-Kurti, G.G., Dixon, R.N. and Marston, C.C. (1990) Time-dependent quantum dynamics of photofragmentation processes, J. Chem. Soc. Faraday Trans.2 86, 1741–1749. Eq. (3) of this reference should be multiplied by 1/(4π) and Eq. (25) by 1/(16π2).

    CAS  Google Scholar 

  57. Brown, A. and Balint-Kurti, G.G. (2000) Spin-orbit branching in the photodissociation of HF and DF: II. A time-dependent wave packet study of vibrationally mediated photodissociation, J. Chem. Phys. 113, 1879–1884.

    CAS  Google Scholar 

  58. Regan, P.M., Ascenzi, D., Brown, A., Balint-Kurti, G.G. and Orr-Ewing, A.J. (2000) Ultraviolet photodissociation of HCI in selected rovibrational states: Experiment and theory, J. Chem. Phys. 112, 10259–10268.

    Article  CAS  Google Scholar 

  59. Balint-Kurti, G.G., Orr-Ewing, A.J., Beswick, J.A., Brown, A. and Vasyutinskii, O.S. (2002) Vector correlations and alignment parameters in the photodissociation of HF and DF, J. Chem. Phys. 116, 10760–10768.

    Article  CAS  Google Scholar 

  60. Rakitzis, T.P., Samartzis, P.C., Toomes, R.L., Kitsopoulos, T.N., Brown, A., Balint-Kurti, G.G., Vasyutinskii, O.S. and Beswick, J.A. (2003) Spin-polarized hydrogen atoms from molecular photodissociation, Science 300, 1936–1938.

    Article  CAS  Google Scholar 

  61. Zhang, J., Riehn, C.W., Dulligan, M. and Wittig, C. (1996) An experimental study of HF photodissociation: Spin-orbit branching ratio and infrared alignment, J. Chem. Phys. 104, 7027–7035.

    CAS  Google Scholar 

  62. Baer, M. (1985) The General Theory of Reactive Scattering: The Differential Equation Approach, in M. Baer (ed.). Theory of Chemical Reaction Dynamics. Vol.I, CRC Press, Inc., Boca Raton, pp.91–161.

    Google Scholar 

  63. Lester, Jr., W.A. (1976) The N Coupled-Channel Problem, in W.H. Miller (ed.). Dynamics of Molecular Collisions, Part A, Plenum Press, New York, pp.1–80.

    Google Scholar 

  64. Clary, D.C. (ed.) (1986) The Theory of Chemical Reaction Dynamics, Reidel, Dordrecht.

    Google Scholar 

  65. Karplus, M. and Tang, K.T. (1967) Quantum-Mechanical Study of H + H2 Reactive Scattering, Disc. Faraday Soc. 44, 56–67.

    Google Scholar 

  66. Miller, W.H. (1968) Distorted-Wave Theory for Collisions of an Atom and a Diatomic Molecule, J. Chem. Phys. 49, 2373–2381.

    CAS  Google Scholar 

  67. Wolken, Jr.., G. and Karplus, M. (1974) Theoretical Studies of H + H2 Reactive Scattering, J. Chem. Phys. 60, 351–367.

    CAS  Google Scholar 

  68. Schatz, G.C. and Kuppermann, A. (1976) Quantum mechanical reactive scattering for three-dimensional atom plus diatom systems. I. Theory, J. Chem. Phys. 65, 4642–4667; Schatz, G.C. and Kuppermann, A. (1976) Quantum mechanical reactive scattering for three-dimensional atom plus diatom systems. II. Accurate cross sections for H + H2, J. Chem. Phys. 65, 4668–4692.

    CAS  Google Scholar 

  69. Kuppermann, A. (1981) in D. Henderson (ed.), Theoretical Chemistry, Vol.6, Part A; Theory of Scattering: Papers in Honour of Henry Eyring, Academic Press, New York, p.79.

    Google Scholar 

  70. Light, J.C. and Walker. R.B. (1976) An R matrix approach to the solution of coupled equations for atom-molecule reactive scattering, J. Chem. Phys. 65, 4272–4282.

    CAS  Google Scholar 

  71. Halavee, U. and Shapiro, M. (1976) A collinear analytic model for atom-diatom chemical reactions, J. Chem. Phys. 64, 2826–2839.

    Article  CAS  Google Scholar 

  72. Baer, M. (1976) Adiabatic and diabatic representations for atom-diatom collisions: Treatment of the three-dimensional case, Chem. Phys. 15, 49–57.

    Article  CAS  Google Scholar 

  73. Kouri, D.J. (1985) The General Theory of Reactive Scattering: The Integral Equation Approach, in M. Baer (ed.). Theory of Chemical Reaction Dynamics, CRC Press, Inc., Boca Raton, pp. 163–225.

    Google Scholar 

  74. Child, M.S. (1967) Measurable consequences of a dip in the activation barrier for an adiabatic chemical reaction, Molec. Phys. 12, 401–416.

    CAS  Google Scholar 

  75. Connor, J.N.L. (1968) On the analytic description of resonance tunnelling reactions, Molec. Phys. 15, 37–46.

    CAS  Google Scholar 

  76. D’Mello, M., Manolopoulos, D.E. and Wyatt, R.E. (1991) Quantum dynamics of the H + D2 → D + HD reaction: Comparison with experiment, J. Chem. Phys. 94, 5985–5993.

    CAS  Google Scholar 

  77. Launay, J.M. and le Dourneuf, M. (1989) Hyperspherical close-coupling calculations of integral cross sections for the reactions H + H2 → H2 + H, Chem. Phys. Lett. 163, 178–188.

    Article  CAS  Google Scholar 

  78. Clary, D.C. (1994) Four-atom reaction dynamics, J. Phys. Chem. 98, 10678–10688.

    Article  CAS  Google Scholar 

  79. Pack, R.T. and Parker, G.A. (1987) Quantum reactive scattering in three dimensions using hyperspherical (APH) coordinates. Theory, J. Chem. Phys. 87, 3888–3921.

    CAS  Google Scholar 

  80. Truhlar, D.G., Mead, C.A. and Brandt, M.A. (1975) Time-Reversal Invariance, Representations for Scattering Wavefunctions, Symmetry of the Scattering Matrix, and Differential Cross-Sections, Adv. Chem. Phys. 33, 295–344.

    Google Scholar 

  81. Schatz, G.C. (1988) Quantum effects in gas phase bimolecular chemical reactions, Annu. Rev. Phys. Chem. 39, 317–340.

    Article  CAS  Google Scholar 

  82. Manolopoulos, D.E. and Clary, D.C. (1989) Quantum Calculations on Reactive Collisions, Annu. Rep. C. Roy. Soc. Chem. 86, 95–118.

    CAS  Google Scholar 

  83. Miller, W.H. (1990) Recent advances in quantum-mechanical reactive scatteringtheory, including comparison of state-to-state cross-sections for H/D + H2 → H2/HD + H reactions, Annu. Rev. Phys. Chem. 41, 245–281.

    CAS  Google Scholar 

  84. Bowman, J.M. (ed.) (1994) Advances in Molecular Vibrations and Collision Dynamics, Vols 2A and 2B, JAI, Greenwich.

    Google Scholar 

  85. Laganà, A., Pack, R.T. and Parker, G.A. (1988) Faraday Disc. Chem. Soc. 84, 409.

    Google Scholar 

  86. Honvault, P. and Launay, J.M. (2001) A quantum-mechanical study of the dynamics of the O(1D)+H2 → OH + H insertion reaction, J. Chem. Phys. 114, 1057–1059.

    Article  CAS  Google Scholar 

  87. Jaquet, R. (2001) Quantum reactive scattering: the time-independent approach, W. Jakubetz (ed.), Lecture Notes in Chemistry 77, Methods in Reaction Dynamics, Springer-Verlag, Berlin, pp. 17–126.

    Google Scholar 

  88. Mazur, J. and Rubin, R.J. (1959) J. Chem. Phys. 31, 1395.

    Article  CAS  Google Scholar 

  89. McCullough, E.A. and Wyatt, R.E. (1971) Dynamics of the collinear H + H2 reaction. I. Probability density and flux, J. Chem. Phys. 54, 3578–3591: ibid. (1971) Dynamics of the collinear H + H2 reaction. II. Energy Analysis, 54, 3592–3600.

    CAS  Google Scholar 

  90. Zuhrt, Ch., Kamal, T. and Zulicke, L. (1975) Quantum mechanical investigations of the collinear collisions F + H2 and F + D2 using the wavepacket approach, Chem. Phys. Lett. 36, 396–400.

    Article  CAS  Google Scholar 

  91. Kellerhals, E., Sathyamurthy, N. and Raff, L.M. (1976) Comparison of quantum mechanical and quasiclassical scattering as a function of surface topology J. Chem. Phys. 64, 818–825.

    Article  CAS  Google Scholar 

  92. Agrawal, P.M. and Raff, L.M. (1981) Calculation of reaction probabilities and rate coefficients for collinear three-body exchange reactions using time-dependent wave packet methods, J. Chem. Phys. 74, 5076–5081.

    CAS  Google Scholar 

  93. Leforestier, C. (1984) Competition between dissociation and exchange processes in a collinear A + BC Collision. 1. Exact Quantum Results, Chem. Phys. 87, 241–261.

    Article  CAS  Google Scholar 

  94. Zhang, Z.H. and Kouri. D.J. (1986) Wave-packet solution to the time-dependent arrangement-channel quantum-mechanics equations, Phys. Rev. A 34, 2687–2696.

    Article  CAS  Google Scholar 

  95. Mohan, V. and Sathyamurthy, N. (1987) Quantal wavepacket calculations of reactive scattering, J. Phys.Chem. 91, 213–258.

    Google Scholar 

  96. Neuhauser, D. and Baer, M. (1989) The application of wave-packets to reactive atom-diatom systems — a new approach, J. Chem. Phys. 91, 4651–4657.

    Article  CAS  Google Scholar 

  97. Neuhauser, D., Baer, M., Judson, R.S. and Kouri, D.J. (1990) A time-dependent wave packet approach to atom diatom reactive collision probabilities — theory and application to H + H2 (J=0) system, J. Chem. Phys. 93, 312–322.

    CAS  Google Scholar 

  98. Gray, S.K. and Balint-Kurti, G.G. (1998) Quantum dynamics with real wavepackets, including application to three-dimensional (J = 0) D + H2 → HD + H reactive scattering, J. Chem. Phys. 108, 950–962.

    Article  CAS  Google Scholar 

  99. Carroll, T.E. and Goldfield, E.M. (2001) Coriolis-coupled quantum dynamics for 0(1D)+H2 → OH + H, J. Phys. Chem. A 105, 2251–2256.

    Article  CAS  Google Scholar 

  100. Kingma, S.M., Somers, M.F., Pijper, E., Kroes, G.J., Olsen. R.A. and Baerends, E.J. (2003) Diffractive and reactive scattering of (v=0, j=0) HD from Pt(lll): Sixdimensional quantum dynamics compared with experiment, J. Chem. Phys. 118, 4190–4197.

    Article  CAS  Google Scholar 

  101. Althorpe, S.C. (2001) Quantum wavepacket method for state-to-state reactive cross sections, J. Chem. Phys. 114, 1601–1616.

    Article  CAS  Google Scholar 

  102. Goldfield, E.M. and Gray, S.K. (2002) A quantum dynamics study of H2+OH − ¿ H2O+H employing the Wu-Schatz-Lendvay-Fang-Harding potential function and a four-atom implementation of the real wave packet method, J. Chem. Phys. 117, 1604–1613.

    Article  CAS  Google Scholar 

  103. Gray, S.K. and Goldfield, E.M. (2001) Dispersion fitted finite difference method with applications to molecular quantum mechanics J. Chem. Phys. 115, 8331–8344.

    Article  CAS  Google Scholar 

  104. Zhang, J.Z.H. (1999) Theory and Application of Quantum Molecular Dynamics, World Scientific, Singapore.

    Google Scholar 

  105. Mohan, V. and Sathyamurthy, N. (1988) Quantal wavepacket calculations of reactive scattering, Computer Phys. Repts. 7, 213–258.

    CAS  Google Scholar 

  106. Balakrishnan, N., Kalyanaraman, C. and Sathyamurthy, N. (1997) Time-dependent quantum mechanical approach to reactive scattering and related processes Phys. Repts.-Review section of Physics Letters 280, 80–144.

    Google Scholar 

  107. Althorpe, S.C, Soldán, P. and Balint-Kurti, G.G. (eds.) (2001) Time-Dependent Quantum Dynamics, CCP6: Collaborative Computational Project on Heavy Particle Dynamics, Darcsbury Laboratory, Darcsbury.

    Google Scholar 

  108. Balint-Kurti, G.G., Gögtas, F., Mort, S.P., Offer, A.R., Laganà, A. and Garvasi, O. (1993) Comparison of Time-Dependent and Time-Independent Quantum Reactive Scattering — Li + HF → LiF + H Model Calculations, J. Chem. Phys. 99, 9567–9584.

    Article  CAS  Google Scholar 

  109. Hankel, M., Balint-Kurti, G.G., and Gray, S.K. (2000) Quantum mechanical calculation of product state distributions for the O(1D)+H2 → OH + H reaction on the ground electronic state surface, J. Chem. Phys. 113, 9658–9667.

    Article  CAS  Google Scholar 

  110. Hankel, M., Balint-Kurti, G.G. and Gray, S.K. (2001) Quantum mechanical calculation of reaction probabilities and branching ratios for the O(1D)+HD → OH(OD)+D(H) reaction on the X1A′ and I1 A″ adiabatic potential energy surfaces, J. Phys. Chem. 105, 2330–2339.

    CAS  Google Scholar 

  111. Hankel, M., Balint-Kurti, G.G. and Gray, S.K. (2003) Sine wavepackets: A new form of wavepacket for time-dependent quantum mechanical reactive scattering calculations Int. J. Quant. Chem. 92, 205–211.

    Article  CAS  Google Scholar 

  112. Gray, S.K., Goldfield, E.M., Schatz, G.C. and Balint-Kurti, G.G. (1999) Helicity decoupled quantum dynamics and capture model cross sections and rate constants for O(1D) + H2(r) → OH + H, Phys. Chem. Chem. Phys. 1, 1141–1148.

    Article  CAS  Google Scholar 

  113. Gray, S.K., Balint-Kurti, G.G., Schatz, G.C., Lin, J.J., Liu. X., Harich, S. and Yang, X. (2000) Probing the effect of the H2 rotational state inO(1D) +H2(r) → OH + H: Theoretical dynamics including nonadiabatic effects and a crossed molecular beam study, J. Chem. Phys. 113, 7330–7344.

    Article  CAS  Google Scholar 

  114. Meijer, A.J.H.M., Goldfield, E.M., Gray, S.K. and Balint-Kurti, G.G. (1998) Flux analysis for calculating reaction probabilities with real wavepackets, Chem. Phys. Lett. 293, 270–276.

    Article  CAS  Google Scholar 

  115. Miquel, I., Gonzalez, M., Sayos, R., Balint-Kurti, G.G., Gray, S.K. and Goldfield, E.M. (2003) Quantum reactive scattering calculations of cross sections and rate constants for the N(2D) +O2 → O(3P) + NO(X2II reaction, J. Chem. Phys. 118, 3111–3123.

    Article  CAS  Google Scholar 

  116. Pack, R.T. (1974) Space-fixed vs. body-fixed axes in atom-diatomic molecule scattering. Sudden approximations, J. Chem. Phys. 60, 633–639.

    Article  CAS  Google Scholar 

  117. McGuire, P. and Kouri, D.J. (1974) Quantum mechanical close coupling approach to molecular collisions. jz-conserving coupled states approximation, J. Chem. Phys. 60, 2488–2499.

    Article  CAS  Google Scholar 

  118. Bowman, J.M. (1991) Reduced dimensionality Theory of quantum reactive scattering, J. Phys. Chem. 95, 4960–4968.

    CAS  Google Scholar 

  119. Bittererova, M. and Bowman, J.M. (2000) A wave-packet calculation of the effect of reactant rotation and alignment on product branching in the O(1D) + HCl → CIO + H, OH + Cl reactions J. Chem. Phys. 113, 1–3; Bittererova, M., Bowman, J.M. and Peterson, K. (2000) Quantum scattering calculations of the O(D-1) plus HC1 reaction using a new ab initio potential and extensions of J-shifting, J. Chem. Phys. 113, 6186–6196.

    Article  CAS  Google Scholar 

  120. Miller, W.H. (1969) Coupled Equations and the Minimum Principle for Collisions of an Atom and a Diatomic Molecule, Including Rearrangements, J. Chem. Phys. 50, 407–418.

    CAS  Google Scholar 

  121. Althorpe, S.C. (2002) Time-dependent plane wave packet formulation of quantum scattering with application to H +D2 → HD + D, J. Chem. Phys. 117, 4623–4627.

    Article  CAS  Google Scholar 

  122. Althorpe, S.C., Fernandez-Alonso, F., Bean, B.D., Avers, J.D., Pomerantz, A.E., Zarc, R.N. and Wrcde, E. (2002) Observation and interpretation of a time-delayed mechanism in the hydrogen exchange reaction, Nature 416, 67–70.

    Article  CAS  Google Scholar 

  123. Hankel, M. (2001) Time-Dependent Wavepacket Methods for the Calculation of Statc-to-Statc Molecular Reactive Cross Sections, Ph.D. thesis, University of Bristol, Bristol.

    Google Scholar 

  124. Messiah, A. (1962) Quantum Mechanics, Vol. II, North-Holland, Amsterdam.

    Google Scholar 

  125. Press, W.H., Flanncry, B.P., Tcukolsky, S.A. and Vcttcrling, W.T. (1987) Numerical Recipes, Cambridge University Press, Cambridge.

    Google Scholar 

  126. Monnerville, M., Halvick, P. and Rayez, J.C. (1992) Time-dependent calculation of the energy resolved state-to-state transition-probabilities for 3-atom exchange-reactions, Chem. Phys. 159, 227–234.

    Article  CAS  Google Scholar 

  127. Monnerville, M., Halvick, P. and Raycz, J.C. (1993) Collincar quantum wave-packet study of exothermic A + BC reactions involving an intermediate complex of linear geometry — application to the C + NO reaction, Chem. Soc Faraday Trans. 89, 1579–1585.

    Article  CAS  Google Scholar 

  128. Mott, N.F. and Massey, H.S.W. (1965) The Theory of Atomic Collisions, Oxford University Press, Oxford.

    Google Scholar 

  129. Leforestier, C. and Wyatt, R.E. (1983) Optical-potential for laser induced dissociation, J. Chem. Phys. 78, 2334–2344.

    Article  CAS  Google Scholar 

  130. Neuhauser, D. and Baer, M. (1989) The time-dependent Schrodinger-equation-application of absorbing boundary conditions, J. Chem. Phys. 90, 4351–4355.

    Article  Google Scholar 

  131. Neuhauser, D., Baer, M., Judson, R.S. and Kouri, D.J. (1991) The application of time-dependent wavepacket methods to reactive scattering, Cornp. Phys. Comrnun. 63, 460–481.

    CAS  Google Scholar 

  132. Child, M.S. (1991) Analysis of a complex absorbing barrier, Molec. Phys. 72, 89–93.

    CAS  Google Scholar 

  133. Seideman, T. and Miller, W.H. (1992) Calculation of the Cumulative Reaction Probability via a Discrete Variable Representation with Absorbing Boundary-Conditions. J. Chem. Phys. 96, 4412–4422.

    Article  CAS  Google Scholar 

  134. Vibók, Á. and Balint-Kurti, G.G. (1992) Reflection and Transmission of Waves by a Complex Potential A Semiclassical Jeffreys-Wcntzel-Kramers-Brillouin (JWKB) Treatment, J. Chem. Phys. 96, 7615–7620.

    Google Scholar 

  135. Vibók, Á. and Balint-Kurti, G.G. (1992) Parameterization of Complex Absorbing Potentials for use in Time Dependent Quantum Dynamics, J. Phys. Chem. 96, 8712–8719.

    Google Scholar 

  136. Balint-Kurti, G.G. and Vibók. Á. (1993) Complex Absorbing Potentials in Time Dependent Quantum Dynamics, in C. Cerjan (ed.), Numerical Grid Methods and their Application to Schrdinger’s Equation, NATO ASI series, Series C: Mathematical and Physical Sciences, Kluwer Academic Publishers, 412 195–205.

    Google Scholar 

  137. Mahapatra, S. and Sathyamurthy, N. (1993) Negative imaginary potentials in time-dependent quantum molecular scattering, Chem. Soc Faraday Trans. 93, 773–779.

    Google Scholar 

  138. Macias, D., Brouard, S. and Muga, J.G. (1994) Optimization of absorbing potentials, Chem. Phys. Lett. 228, 672–677.

    CAS  Google Scholar 

  139. Brouard, S., Macias, D. and Muga, J.G. (1994) Perfect absorbers for stationary and wavepacket scattering, J. Phys. A 27, L439–L445.

    Article  Google Scholar 

  140. Riss, U.V. and Meyer, H.-D. (1996) Investigation on the reflection and transmission properties of complex absorbing potentials, J. Chem. Phys. 105, 1409–1419.

    Article  CAS  Google Scholar 

  141. Riss, U.V. and Meyer, H.-D. (1998) The transformative complex absorbing potential method: a bridge between complex absorbing potentials and smooth exterior scaling, J. Phys. B 31, 2279–2304.

    Article  CAS  Google Scholar 

  142. Manolopoulos, D.E. (2002) Derivation and reflection properties of a transmission-free absorbing potential, J. Chem. Phys. 117, 9552–9559.

    Article  CAS  Google Scholar 

  143. Gray, S.K. and Verosky, J.M. (1994) Classical Hamiltonian structures in wave-packet dynamics, J. Chem. Phys. 100, 5011–5022.

    Article  CAS  Google Scholar 

  144. Gray, S.K. and Manolopoulos, D.E. (1996) Symplcctic integrators tailored to the time-dependent Schrodinger equation, J. Chem. Phys. 104 7099–7112.

    Article  CAS  Google Scholar 

  145. Arfken, G.B. and Weber, H.J. (1970) Mathematical Methods for Physicists, Academic Press, San Diego.

    Google Scholar 

  146. Huang, Y., Kouri, D.J. and Hoffman, D.K. (1994) General, energy-separable Faber polynomial representation of operator-functions — theory and application in quantum scattering, J. Chem. Phys. 101, 10493–10506.

    CAS  Google Scholar 

  147. Huang, Y., Iyengar, S.S., Kouri, D.J. and Hoffman, D.K. (1996) Further analysis of solutions to the time-independent wave packet equations of quantum dynamics. 2. Scattering as a continuous function of energy using finite, discrete approximate Hamiltonians, J. Chem. Phys. 105, 927–939.

    CAS  Google Scholar 

  148. Mandelshtam, V.A. and Taylor, H.S. (1995) Spectral projection approach to the quantum scattering calculations, J. Chem. Phys. 102, 7390–7399.

    CAS  Google Scholar 

  149. Mandelshtam, V.A. and Taylor, H.S. (1995) A simple recursion polynomial expansion of the Green’s-function with absorbing boundary conditions — application to the reactive scattering, J. Chem. Phys. 103, 2903–2907.

    CAS  Google Scholar 

  150. Kroes, G.-J. and Neuhauser, D. (1996) Performance of a time-independent scattering wave packet technique using real operators and wave functions, J. Chem. Phys. 105, 8690–8698.

    CAS  Google Scholar 

  151. Kroes, G.-J., Baerends, E.J. and Mowrey, R.C. (1997) Six-Dimensional Quantum Dynamics of Dissociative Chemisorption of (v = 0, j = 0) H2 on Cu(100), Phys. Rev. Lett. 78, 3583–3586.

    Article  CAS  Google Scholar 

  152. Kroes, G.-J., Wall, M.R., Peng, J.W. and Neuhauser, D. (1997) Avoiding long propagation times in wave packet calculations on scattering with resonances: A new algorithm involving filter diagonalization, J. Chem. Phys. 106, 1800–1807.

    Article  CAS  Google Scholar 

  153. Kroes, G.-J., van Hemert, M.C., Billing, G.D. and Neuhauser, D. (1997) Photodis-sociation of CH2(1 3B1) through the coupled 2 A″ and 3 A″ states: Quantitative branching ratios for the production of CH+H and C+H2. Chem. Phys. Lett. 271, 311–319.

    Article  CAS  Google Scholar 

  154. Chen, R. and Guo, H. (1996) Evolution of quantum system in order domain of Chebyshev operator. J. Chem. Phys. 105, 3569–3578.

    CAS  Google Scholar 

  155. Chen, R. and Guo, H. (1996) Extraction of resonances via wave packet propagation in Chebyshev order domain: collinear H + H2 scattering, Chem. Phys. Lett. 261, 605–611.

    Article  CAS  Google Scholar 

  156. Guo, H. (1998) A time-independent theory of photodissociation based on polynomial propagation, J. Chem. Phys. 108, 2466–2472.

    CAS  Google Scholar 

  157. Guo, H. and Seideman, T. (1999) Quantum mechanical study of photodissociation of oriented CINO(1S), Phys. Chem. Chem. Phys. 1, 1265–1272.

    CAS  Google Scholar 

  158. Xie, D., Guo, H., Amatatsu, Y. and Kosloff, R. (2000) Three-dimensional photodissociation dynamics of rotational state selected methyl iodide. J. Phys. Chem. 104, 1009–1019.

    CAS  Google Scholar 

  159. Guo, H. (1998) An efficient method to calculate resonance Raman amplitudes via polynomial propagation, Chem. Phys. Lett. 289, 396–402.

    Article  CAS  Google Scholar 

  160. Sayós, R. and González, M., TRIQCT (unpublished program).

    Google Scholar 

  161. Lee, S.-H. and Liu, K. (1999) Effect of reagent rotation in O(1D) + H2(v = 0,j): A sensitive probe of the accuracy of the ab initio excited surfaces? J. Chem. Phys. 111, 4351–4352.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Balint-Kurti, G.G., Brown, A. (2004). Time-Dependent Wavepacket Calculations for Reactive Scattering and Photodissociation. In: Lagana, A., Lendvay, G. (eds) Theory of Chemical Reaction Dynamics. NATO Science Series II: Mathematics, Physics and Chemistry, vol 145. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2165-8_7

Download citation

Publish with us

Policies and ethics