Skip to main content

Differential Cross Sections for Abstraction Reactions of Halogen Atoms with Molecular Hydrogen Including Nonadiabatic Effects

  • Conference paper
Theory of Chemical Reaction Dynamics

Abstract

We describe in detail the determination of differential cross sections for the abstraction reaction of a halogen atom with molecular hydrogen. As an illustration we give some examples of differential cross sections for the F+H2→HF+H and Cl+H2→HCl+H reactions, extending calculations described in earlier publications from our research groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison, T. C., Mielke, S. L., Schwenke, D. W., Lynch, G. C., Gordon, M. S. and Truhlar, D. G. (1996) Die Photochemischen Bildung des Chlorwasserstoffs. Dynamics of Cl + H2 → HCl + H on a New Potential Energy Surface: The Photosynthesis of Hydrogen Chloride Revisited 100 Years after Max Bodenstein in J Wolfrum, H-R Volpp, R Rannacher and J Warnatz (eds), Gas-Phase Reaction Systems: Experiments and Models 100 Years after Max Bodenstein, Springer, Heidelberg, pp. 111–24; Manolopoulos, D. E. (1997) The dynamics of the F+H2 reaction, J. Chem. Soc. Faraday Trans. 93, 673–83; Casavecchia, P. (2000) Chemical reaction dynamics with molecular beams, Rep. Prog. Phys. 63, 355–414.

    Google Scholar 

  2. Stark, K. and Werner, H.-J. (1996) An accurate multireference configuration interaction calculation of the potential energy surface for the F+H2 → HF+H reaction, J. Chem. Phys. 104, 6515–30.

    Article  CAS  Google Scholar 

  3. Manolopoulos, D. E., Stark, K., Werner, H.-J., Arnold, D. W., Bradforth, S. E. and Neumark, D. M. (1993) The Transition State of the F+H2 Reaction, Science 262, 1852–5.

    CAS  Google Scholar 

  4. Baer, M., Faubel, M., Martinez-Haya, B., Rusin, L. Y., Tappe, U. and Toennies, J. P. (1996) State-to-state differential cross sections for the reaction F + D2 at 90 meV: A crossed molecular beam experiment and a quantum mechanical study, J. Chem. Phys. 108, 9694–710; Honvault, P. and Launay, J.-M. (1998) Quantum mechanical study of the F + D2→DF + D reaction, Chem. Phys. Lett. 287, 270–4; Honvault, P. and Launay, J.-M. (1999) Effect of spinorbit corrections on the F+D2 → DF+D reaction, Chem. Phys. Lett. 303, 657–63; Baer, M., Faubel, M., Martinez-Haya, B., Rusin, L. Y., Tappe, U. and Toennies, J. P. (1999) Rotationally resolved differential scattering cross sections for the reaction F + para-H2 (v = 0, j = 0) →HF(v′ = 2, 3, j′ ) + H, J. Chem. Phys. 110, 10231–4; Skodje, R. T., Skouteris, D., Manolopoulos, D. E., Lee, S.-H., Dong, F. and Liu, K. (2000) Observation of a transiti on state resonance in the integral cross section for the F+HD reaction, J. Chem. Phys. 112, 4536–52; Aquilanti, V., Cavalli, S., De Fazio, D., Volpi, A., Aguilar, A., Gimenez, X. and Lucas, J. M. (2002) Exact reaction dynamics by the hyperquantization algorithm: integral and differential cross sections for F+H2, including long-range and spin orbit effects, Phys. Chem. Chem. Phys. 4, 401–15; Krems, R. and Dalgarno, A. (2002) Electronic and rotational energy transfer in F(2P1/2)+H2 collisions at ultracold temperatures, J. Chem. Phys. 117, 118–23.

    Google Scholar 

  5. Castillo, J. F., Manolopoulos, D. E., Stark, K. and Werner, H.-J. (1996) Quantum mechanical angular distributions for the F+H2 reaction, J. Chem. Phys. 104, 6531–46; Castillo, J. F. and Manolopoulos, D. E. (1998) Quantum mechanical angular distributions for the F+HD reaction, Faraday Discuss. Chem. Soc. 110, 119–38.

    Article  CAS  Google Scholar 

  6. Castillo, J. F., Hartke, B., Werner, H.-J., Aoiz, F. J., Bañares, B. and Martìnez-Haya, B. (1998) Quantum mechanical and quasiclassical simulations of molecular beam experiments for the F+H2→HF+H reaction on two ab intio potential energy surfaces, J. Chem. Phys. 109, 7224–37.

    Article  CAS  Google Scholar 

  7. Xie, T. X., Zhang, Y., Zhao, M. Y. and Han, K. L. (2003) Calculations of the F+HD reaction on three potential energy surfaces, Phys. Chem. Chem. Phys. 5, 2034–8.

    Article  CAS  Google Scholar 

  8. Aoiz, F. J., Bañares, L., Martĩnez-Haya, B., Castillo, J., Manolopoulos, D. E., Stark, K. and Werner, H.-J. (1997) Ab initio simulations of molecular beam experiments for the F+H2ÆHF+H reaction, J. Phys. Chem. A101, 6403.

    Google Scholar 

  9. Hartke, B. and Werner, H.-J. (1997) Time-dependent quantum simulations of FH2 photoelectron spectra on new ab initio potential energy surfaces for the anionic and the neutral species, Chem. Phys. Lett. 280, 430–8.

    Article  CAS  Google Scholar 

  10. Neumark, D. M., Wodtke, A. M., Robinson, G. N., Hayden, C. C. and Lee, Y. T. (1985) Molecular beam studies of the F+H2 reaction, J. Chem. Phys. 82, 3045–66.

    CAS  Google Scholar 

  11. Neumark, D. M., Wodtke, A. M., Robinson, G. N., Hayden, C. C., Shobatake, R., Sparks, R. K., Schafer, T. P. and Lee, Y. T. (1985) Molecular beam studies of the F+D2 and F+HD reactions, J. Chem. Phys. 82, 3067–77.

    CAS  Google Scholar 

  12. Faubel, M., Rusin, L., Schlemmer, S., Sonderman, F., Tappe, U. and Toennies, J. P. (1994) A high resolution crossed molecular beam investigation of the absolute cross sections and product rotational states for the reaction F+D2 (vi=0; ji=0,1) →DF (vf; jf)+D, J. Chem. Phys.101, 21

    CAS  Google Scholar 

  13. Dong, F., Lee, S.-H. and Liu, K. (2000) Reactive excitation functions for F+p-H2 / n-H2 / D2 and the vibrational branching for F+HD, J. Chem. Phys. 113, 3633–40.

    CAS  Google Scholar 

  14. Liu, K., Skodje, R. T. and Manolopoulos, D. E. (2002) Resonances in bimolecular reactions, Phys. Chem. Comm. 4, 27–33.

    Google Scholar 

  15. Aoiz, F. J. and Bañares, L. (1996) Reaction Cross Sections and Rate Constants for the Cl + H2(D2) →HCl(DCl) + H(D) Reaction from Quasiclassical Trajectory Calculations on an ab Initio Potential Energy Surface, J. Phys. Chem. 100, 18108–15; Mielke, S. C., Allison, T. C., Truhlar, D. G. and Schwenke, D. W. (1996) Quantum mechanical rate coefficients for the Cl + H2 reaction, J. Phys. Chem. 100, 13588–93; Wang, H., Thompson, W. H. and Miller, W. H. (1997) Thermal rate constant calculation using flux-flux autocorrelation functions: Application to Cl + H2 →HCl + H reaction, J. Chem. Phys. 107, 7194–201; Skouteris, D., Manolopoulos, D. E., Bian, W., Werner, H.-J., Lai, L.-H. and Liu, K. (1999) van der Waals Interactions in the Cl+HD Reaction, Science 286, 17136; Manthe, U., Bian, W. and Werner, H.-J. (1999) Quantum-mechanical calculation of the thermal rate constant for the H2+Cl → H+HCl rea ction, Chem. Phys. Lett. 313, 647–54; Balucani, N., Cartechini, L., Casavecchi, P., Volpi, G. G., Aoiz, F. J., Bañares, L., Menéndez, M., Bian, W. and Werner, H.-J. (2000) Dynamics of the Cl+D2 reaction: a comparison of crossed molecular beam experiments with quasi-classical trajectory calculations on a new ab initio potential energy surface, Chem. Phys. Lett. 328, 500–8; Shen, C., Wu, T., Ju, G. and Bian, W. (2001) Cl+HD reaction dynamics from quasiclassical trajectory calculation on a new ab initio potential energy surface, Chem. Phys. 272, 61–8.

    CAS  Google Scholar 

  16. Yang, B.-H., Gao, H.-T., Han, K.-L. and Zhang, J. Z. H. (2000) Time-dependent quantum dynamics study of the Cl + H2 reaction, J. Chem. Phys. 113, 1434–40.

    CAS  Google Scholar 

  17. Skouteris, D., Werner, H.-J., Aoiz, F. J., Bañares, L., Castillo, J. F., Menéndez, M., Balucani, N., Cartechini, L. and Casavecchia, P. (2001) Experimental and theoretical differential cross sections for the reactions Cl + H2/D2, J. Chem. Phys. 114, 10662–72; Aoiz, F. J., Bañares, L., Castillo, J., Menéndez, M., Skouteris, D. and Werner, H.-J. (2001) A quantum mechanical and quasi-classical trajectory study of the Cl + H2 reaction and its isotopic variants: Dependence of the integral cross section on the collision energy and reagent rotation, J. Chem. Phys. 115, 2074–81.

    Article  CAS  Google Scholar 

  18. Alexander, M. H., Capecchi, G. and Werner, H.-J. (2002) The validity of the Born-Oppenheimer approximation in the Cl+H2 →HCl+H reaction, Science 296, 715–8.

    Article  CAS  Google Scholar 

  19. Allison, T. C., Lynch, G. C., Truhlar, D. G. and Gordon, M. S. (1996) An Improved Potential Energy Surface for the H2Cl System and Its Use for Calculations of Rate Coefficients and Kinetic Isotope Effects, J. Phys. Chem. 100, 13575–87.

    Article  CAS  Google Scholar 

  20. Bian, W. and Werner, H.-J. (2000) Global ab initio potential energy surfaces for the ClH2 reactive system, J. Chem. Phys. 112, 220–9.

    Article  CAS  Google Scholar 

  21. Capecchi, G. and Werner, H.-J. (to be published. Available at http://www.theochem.unistuttgart.de).

  22. Rebentrost, F. and Lester, W. A., Jr. (1975) Nonadiabatic effects in the collision of F(2P) with H2(1σg+) I. SCF interation potentials for the 12A′, 22A′, and 2A″ states in the reactant region, J. Chem. Phys. 63, 3737–40; Aquilanti, V., Cavalli, S., De Fazio, D. and Volpi, A. (1998) Hyperquantization algorithm. II. Implementation for the F + H2 reaction dynamics including open-shell and spin-orbit interactions, J. Chem. Phys. 109, 3805–18.

    Article  CAS  Google Scholar 

  23. Faist, M. B. and Muckerman, J. T. (1979) On the valence bond diatomics-in-molecules method. II. Application to the valence states of FH2, J. Chem. Phys. 71, 233–54; Bettendorf, M., Buenker, R. J., Peyerimhoff, S. D. and Römelt, J. (1982) Ab Initio CI Calculations of the Effects of Rydberg-Valence Mixing in the Electronic Spectrum of the HF Molecule, Z. Phys. A. 304, 125–35.

    CAS  Google Scholar 

  24. Alexander, M. H., Pouilly, B. and Duhoo, T. (1993) Spin-orbit branching in the photofragmentation of HCl, J. Chem. Phys. 99, 1752–64.

    CAS  Google Scholar 

  25. Moore, C. E. (1971) Atomic Energy Levels, NSRDS-NBS 35, U. S. Government Printing Office, Washington.

    Google Scholar 

  26. Shuler, K. E. (1953) Adiabatic Correlation Rules for Reactions Involving Polyatomic Intermediate Complexes and their Application to the Formation of OH(2σ+) in the H2-O2 Flame, J. Chem. Phys. 21, 624–32.

    CAS  Google Scholar 

  27. Donovan, R. J. and Husain, D. (1970) Recent Advances in the Chemistry of Electronically Excited Atoms, Chem. Rev. 70, 489–516.

    Article  CAS  Google Scholar 

  28. Lee, S.-H. and Liu, K. (1999) Exploring the spin-orbit reactivity in the simplest chlorine atom reaction, J. Chem. Phys. 111, 6253–9.

    CAS  Google Scholar 

  29. Lee, S.-H., Lai, L.-H., Liu, K. and Chang, H. (1999) State-specific excitation function for Cl(2P)+H2 (v=0,j): Effects of spin-orbit and rotational states, J. Chem. Phys. 110, 8229–32; Dong, F., Lee, S.-H. and Liu, K. (2001) Direct determination of the spin-orbit reactivity in Cl(2P3/2, 2P1/2)+H2/D2/HD reactions, J. Chem. Phys. 115, 1197–204.

    CAS  Google Scholar 

  30. Dagdigian, P. J. and Campbell, M. L. (1987) Spin-Orbit Effects in Gas-Phase Chemical Reactions, Chem. Rev. 87, 1–17.

    Article  CAS  Google Scholar 

  31. Tully, J. C. (1974) Collisions of F(2P1/2) with H2, J. Chem. Phys. 60, 3042–50.

    Article  CAS  Google Scholar 

  32. Rebentrost, F. and Lester, W. A., Jr. (1977) Nonadiabatic effects in the collision of F(2P) with H2(1σg+) III. Scattering theory and coupled-channel calculations, J. Chem. Phys. 67, 3367–74; Wyatt, R. E. and Walker, R. B. (1979) Quantum mechanics of electronic-rotational energy transfer in F(2P)+H2 collisions, J. Chem. Phys. 70, 1501; Lepetit, B., Launay, J. M. and le Dourneuf, M. (1986) Quantum study of electronically non-adiabatic colinear reactions. II. Influence of spin-orbit transitions on the F+HH reaction, Chem. Phys. 106, 111–22; Billing, G. D., Rusin, L. Y. and Sevryuk, M. B. (1995) A wave packet propagation study of inelastic and reactive F+D2 scattering, J. Chem. Phys. 103, 2482–94; Gilibert, M. and Baer, M. (1994) Exchange Processes via Electronic Nonadiabatic Transitions: An Accurate Three-Dimensional Quantum Mechanical Study of the F(2P1/2, 2P3/2) + H2 Reactive Systems, J. Phys. Chem. 98, 12822–3.

    CAS  Google Scholar 

  33. Alexander, M. H., Werner, H.-J. and Manolopoulos, D. E. (1998) Spin-orbit effects in the reaction of F(2P) with H2, J. Chem. Phys. 109, 5710–3.

    Article  CAS  Google Scholar 

  34. Alexander, M. H., Manolopoulos, D. E. and Werner, H. J. (2000) An investigation of the F+ H2 reaction based on a full ab initio description of the open-shell character of the F(2P) atom, J. Chem. Phys. 113, 11084–100.

    CAS  Google Scholar 

  35. Balucani, N., Skouteris, D., Cartechini, L., Capozza, G., Segoloni, E., Casavecchia, P., Alexander, M. H., Capecchi, G. and Werner, H.-J. (2003) Differential cross sections from quantum calculations on coupled ab initio potential energy surfaces and scattering experiments for the reaction Cl(2P)+H2, Phys. Rev. Lett. 91, 1–4.

    Article  Google Scholar 

  36. Schatz, G. C. (1995) Influence of Atomic Fine Structure on Bimolecular Rate Constants: The Cl(2P) + HCl Reaction, J. Phys. Chem. 99, 7522–9.

    CAS  Google Scholar 

  37. Maierle, C. S., Schatz, G. C., Gordon, M. S., McCabe, P. and Connor, J. N. L. (1997) Coupled potential energy surfaces and quantum reactive scattering for the Cl(2P) +HCl→ClH+Cl(2P) reaction, J. Chem. Soc. Faraday Trans. 93, 709–20; Schatz, G. C., McCabe, P. and Connor, J. N. L. (1998) Quantum scattering studies of spin-orbit effects in the Cl(2P)+HCl →ClH + Cl(2P) reaction, Faraday Disc. Chem. Soc. 110, 139–57; Whitely, T. W. J., Dobbyn, A. J., Connor, J. N. L. and Schatz, G. C. (2000) Quantum scattering on coupled ab initio potential energy surfaces for the Cl(2P)+HCl→ ClH+Cl(2P) reaction, Phys. Chem. Chem. Phys. 2, 549–56.

    Article  CAS  Google Scholar 

  38. Skouteris, D., Castillo, J. F. and Manolopoulos, D. E. (2000) ABC: A Quantum Reactive Scattering Program, Comput. Phys. Comm. 133, 128.

    Article  CAS  Google Scholar 

  39. Schatz, G. C. (1990) Quantum reactive scattering using hyperspherical coordinates: Results for H+H2 and Cl+HCl, Chem. Phys. Lett. 150, 92–8.

    Google Scholar 

  40. Schatz, G. C. and Kuppermann, A. (1976) Quantum mechanical reactive scattering for threedimensional atom plus diatom systems. I. Theory, J. Chem. Phys. 65, 4642–67.

    CAS  Google Scholar 

  41. Pack, R. T and Parker, G. A. (1987) Quantum reactive scattering in three dimensions using hyperspherical (APH) coordinates. Theory, J. Chem. Phys. 87, 3888–921.

    CAS  Google Scholar 

  42. Dubernet, M.-L. and Hutson, J. M. (1994) Atom-molecule van der Waals complexes containing open-shell atoms. 2. The Bound States of Cl-HCl, J. Phys. Chem. 98, 5844–54.

    Article  CAS  Google Scholar 

  43. Brink, D. M. and Satchler, G. R. (1968) Angular Momentum 2nd edn, Clarendon, Oxford.

    Google Scholar 

  44. Meyer, H.-D. and Miller, W. H. (1979) Classical models for electronic degrees of freedom: Derivation via spin analogy and application to F*+H2→F+H2, J. Chem. Phys. 71, 2156–69.

    Article  CAS  Google Scholar 

  45. Dubernet, M.-L. and Hutson, J. M. (1994) Atom-molecule van der Waals complexes containing open-shell atoms. I. General thoery and bending levels, J. Chem. Phys. 101, 1939–58.

    Article  CAS  Google Scholar 

  46. Lepetit, B. and Launay, J. M. (1991) Quantum mechanical study of the reaction He+H2+→ HeH++ H with hyperspherical coordinates, J. Chem. Phys. 95, 5159–68.

    Article  CAS  Google Scholar 

  47. Johnson, B. R. (1973) The Multichannel Log-Derivative Method for Scattering Calculations, J. Comp. Phys. 13, 445–9; Manolopoulos, D. E. (1986) An improved log derivative propagator for inelastic scattering, J. Chem. Phys. 85, 6425–9.

    Google Scholar 

  48. Lefebvre-Brion, H. and Field, R. W. (1986) Perturbations in the Spectra of Diatomic Molecules, Academic, New York.

    Google Scholar 

  49. Miller, W. H. (1969) Coupled equations and the minimum principle for collisions of an atom and a diatomic molecule, including rearrangements, J. Chem. Phys. 50, 407–18.

    CAS  Google Scholar 

  50. Zare, R. N. (1988) Angular Momentum, Wiley, New York.

    Google Scholar 

  51. Zhang, J. Z. H. and Miller, W. H. (1989) Quantum reactive scattering via the S-matrix version of the Kohn variational principle: Differential and integral cross sections for D+H2→ HD+H, J. Chem. Phys. 91, 1528–47.

    CAS  Google Scholar 

  52. Werner, H.-J., Follmeg, B. and Alexander, M. H. (1988) Adiabatic and Diabatic Potential Energy Surfaces for Collisions of CN (X2σ+, A2π) with He, J. Chem. Phys. 89, 3139–51.

    CAS  Google Scholar 

  53. Alexander, M. H. (1993) Adiabatic and Approximate Diabatic Potential Energy Surfaces for the B...H2 van der Waals Molecule, J. Chem. Phys. 99, 6014–2026.

    CAS  Google Scholar 

  54. Aoiz, F. J., Bañares, L. and Castillo, J. F. (1999) Spin-orbit effects in quantum mechanical rate constant calculations for the F+H2→HF+H reaction, J. Chem. Phys. 111, 4013–24.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Alexander, M.H., Tzeng, YR., Skouteris, D. (2004). Differential Cross Sections for Abstraction Reactions of Halogen Atoms with Molecular Hydrogen Including Nonadiabatic Effects. In: Lagana, A., Lendvay, G. (eds) Theory of Chemical Reaction Dynamics. NATO Science Series II: Mathematics, Physics and Chemistry, vol 145. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2165-8_2

Download citation

Publish with us

Policies and ethics