Skip to main content

Towards a Grid Based Universal Molecular Simulator

  • Conference paper
Theory of Chemical Reaction Dynamics

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 145))

Conclusions

The impact produced by the evolution of computer technologies towards Grid systems on the size and the complexity of the problems that theoretical and computational studies of chemical reactions can afford is discussed. The analysis is extended on one side to how this affects the way computer codes are structured to gain significant efficiency and on the opposite side to how alternative formulation of the reactive scattering equations can be written to exploit the advantages of concurrent computing. In particular, the use of traditional low level parallelization libraries has been considered and compared with that of coordination languages based on skeletons and related extensions. As for alternative approaches those based on BO coordinates which have the advantage of formulating in a homogeneous way the potential and the Laplacian operator, are analyzed. In particular new formulations of the functional representations of the interaction are discussed and the formulation of the Hamiltonian in terms of both BO and HYBO coordinates are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baker, M., Buyya, R., Laforenza, D. (2002) Grids and Grid technologies for wide-area distributed computing, Software: Practice and Experience, 32(15), Wiley Press, USA

    Google Scholar 

  2. Gentzsch, W. (1999) Future Generation Computer Systems. 15, 537.

    Google Scholar 

  3. (1999), The Grid: Blueprint for a Future Computing Infrastructure, I. Foster, and C. Kcssclman Eds., Morgan Kaufmann Publishers, USA.

    Google Scholar 

  4. Baker, M., Buyya, R., Laforenza, D. (2000) The Grid: International Efforts in Global Computing, SSGRR2000, L’Aquila, Italy, July.

    Google Scholar 

  5. Gentzsch, W. (1999) Future Generation Computer Systems, 15, 1.

    Google Scholar 

  6. Baker, M., Fox, G. (1999) Metacomputing: Harnessing Informal Supercomputers. High Performance Cluster Computing: Architectures and Systems, Buyya, R., Ed., Volume 1, Prentice Hall PTR, N.J, USA.

    Google Scholar 

  7. Foster, I., Kesselman, K. (1997) Int. J. Supercomputing Applications, 115, 28; Foster, I., Kessclman, K. (1998) The Globus Project: a status report IPPS/SPDP’98 Heterogeneous Computing Workshop S.4-18, http://www.fp.globus.org/documentation/papers.html; http://www.globus.org

    Google Scholar 

  8. Gallopoulos, S., Houstis, E., Rice, J. (1994) Computer as Thinker/Doer: Problem-Solving Environments for Computational Science, IEEE Computational Science and Engineering, Summer 94.

    Google Scholar 

  9. Information Society Technologies, 2003–2004 Workprogrammc http://cost.cordis.lu/ist page 30

  10. http://cost.cordis.lu/src/home.cfm.

  11. Laganà, A., METACHEM: Metalaboratories for cooperative innovative computational chemical applications, METACHEM workshop, Brussels, November (1999).

    Google Scholar 

  12. COST Action N. D23, METACHEM: Metalaboratories for complex computational applications in chemistry.

    Google Scholar 

  13. COST Action N. D23, Project 003/2001, SIMBEX: a Metalaboratory for the a priori Simulation of Crossed Molecular Beam Experiments.

    Google Scholar 

  14. Storchi, L., Manuali, C, Gervasi, O., Vitillaro G, Laganà, A., Tarantelli, F. (2003) Lecture Notes in Computer Science, 2658, 297.

    Google Scholar 

  15. Gervasi, O., Lagana, A., Lobbiani, M. (2002) Lecture Notes in Computer Science, 2331, 956.

    Google Scholar 

  16. Baraglia, R.; Laforenza, D.; Laganà, A. A Web based Metacomputing Problem-Solving Environment for Complex Applications, Workshop on Grid Computing, Bangalore, December 2000. Errata corrige: In Fig. 4 of this paper the first arrow down on the upper left hand side should have a YES instead of a NO. ASI PQE200 project workpackage 4 and 5.

    Google Scholar 

  17. see the homepage http://www.pnl.gov.2080/

  18. Amos, R.D., Alberts, L.L., Andrews, J.S., Colwell, S.M., Handy, N.C., Jayatilaka, D., Knowles, P.J., Kobayashi, P., Koga, N., Laidig, K.E., Maslen, P.E., Murray, C.W., Rice, J.E., Sanz, J., Simandiras, E.D., Stone, A.J., Su, M.-D. (1995) CAD-PAC, Issue 6, University of Cambridge.

    Google Scholar 

  19. Ahlrichs, R., Br, M., Hser, M., Horn, H., Klmel, C. (1989) Chem. Phys. Letters, 162, 165.

    CAS  Google Scholar 

  20. Dupuis, M., Watts, J.D., Villar, H.O., Hurst, G.J.B. (1989) Comput. Phys. Com-mun., 52, 415.

    CAS  Google Scholar 

  21. Dupuis, M., Spangler, D., Wendoloski, J. (1980) NRCC Software Catalog, Vol. 1, Progr. No. QG01.

    Google Scholar 

  22. Laganà, A., Riganelli, A. (2000) Lecture Notes in Chemistry, 75, 1.

    Google Scholar 

  23. An atom diatom time-dependent quantum program (see Balint-Kurti, G.G. (2000) Lecture Notes in Chemistry, 75, 74).

    CAS  Google Scholar 

  24. An atom diatom quantum program based on APH coordinates (see Parker, G.A., Crocchianti, S., Kiel, M. (2000) Lecture Notes in Chemistry, 75, 88).

    CAS  Google Scholar 

  25. A polyatomic reactive program derived from that of Hase, W.H., Duchovic, R.J., Hu, X., Komornicki, A., Lim, K.F., Lu, D.G. Peslherbe, H. Swamy, K.N., Vande Linde, S.R. Varandas, A., Wang, H., Wolf, R.Y. VENUS96: A General Chemical Dynamics Program, QCPE Program N. 671, Indiana University, Bloomington, Indiana.

    Google Scholar 

  26. DL-POLY is a package of molecular simulation routines written by Smith, W., Forester, T.R. copyright The Council for the Central Laboratory of the Research Councils, Darcsbury Laboratory at Daresbury, Warrington, UK (1996).

    Google Scholar 

  27. Longo, S., Milclla, A. (2001) Chem. Phys. Letters, 274, 219.

    CAS  Google Scholar 

  28. a) Message Passing Interface Forum, Int. J. Supercomput. Appl. 8(3/4), 1994; b) Smir, M., Otto, S., Huss-Ledermam, S., Walker, D., Dongarra, J.: MPI: The completereference, MIT Press, 1996.

    Google Scholar 

  29. D’Agosto, G., Picrmarini, V., Pacifici, L., Crocchianti, S., Laganà, A. Tasso, S. (2001) Lecture Notes in Computer Science 2073, 367.

    Google Scholar 

  30. Bolloni, A., Crocchianti, S., Laganà, A. (2000) Lecture Notes in Computer Science, 1908, 338.

    Google Scholar 

  31. Kiclmann, T. Hofman, R.H.F., Bal, H.E., Plaat, A., Bhocdjang, R.A.F. (1993) “Magpie: MPI’s collective communication operations via clustered wide area systems” In Proc. Symposium on Principles and Practice of Parallel Programming, Sand Diego.

    Google Scholar 

  32. Foster, I., Karonis, N. (1998) “A Grid enabled MPI: Message passing in heterogeneous distributing computing systems” In Proc. Supercomputing’ 98”.

    Google Scholar 

  33. Karonis, N., de Supinski, B., Foster, I., Gropp, W., Lusk, E., Bresnahan, J. (2000) “Exploiting hierarchy in parallel computer networks to optimize collective operation performance” In Proc. International Parallel and Distributed Processing Symposium.

    Google Scholar 

  34. Danelutto, M., Di Meglio, R., Orlando, S., Pelagatti, S., Vanneschi, M. (1992) Future. Generation Comput. Syst., 8, 205; Pelagatti, S., Structured development of parallel programs, Taylor & Francis Ltd, London, 1998.

    Article  Google Scholar 

  35. Vanneschi, M. (2000) Lecture Notes in Chemistry 75, 168.

    CAS  Google Scholar 

  36. Ciullo, P., Danelutto, M., Vaglini, L., Vanneschi, M., Guerri, D., Lettere, M. (2001) Ambiente ASSIST: modello di programmazione e linguaggio Assist (versione 1.0), Progetto ASSIST PQE 2000, Università di Pisa, February; Vanneschi, M. (2002) ASSIST: An Environment for Parallel and Distributed Portable Applications, Technical Report TR-02-07, Università di Pisa.

    Google Scholar 

  37. Laganà, A., Tarantelli, F., Gervasi, O., Pacifici, L., Villani, C., Storchi, L. (2002) ASI PQE2000, Work package n.4: Demostrators and benchmarking.

    Google Scholar 

  38. Piermarini, V., Pacifici, L., Crocchianti, S., Laganà, A., D’Agosto, G., Tasso, S. (2001) Lecture Notes in Computer Science, 2073, 567.

    Google Scholar 

  39. Bellucci, D., Tasso, S., Lagana, A. (2002) Lecture Notes in Computer Science 2331, 918.

    Google Scholar 

  40. Lagana, A., Faginas Lago, N., Riganelli, A., Ferraro, G. (2001) An approach to reactive scattering based on nonorthogonal coordinates, XIX International Symposium on Molecular Beams, p. 281; Faginas Lago, N. (2002) Phd Thesis, Perugia.

    Google Scholar 

  41. Lagana, A., Crocchianti, S., Faginas Lago, N., Pacifici, L., Ferraro, G. (2003) Coll. Czech. Chem. Comm., 68, 386.

    Google Scholar 

  42. Murrell, J.N., Carter, S., Farantos, S.C., Huxley, P., Varandas, A.J.C. (1984) Molecular Energy Functionals, Wiley, New York.

    Google Scholar 

  43. Garcia, E., Lagana, A. (1985) Mol. Phys. 56, 621.

    CAS  Google Scholar 

  44. Garcia, E., Lagana, A. (1985) Mol. Phys. 56, 629.

    CAS  Google Scholar 

  45. Lagana, A. (1991) .J. Chem. Phys. 95, 2216.

    CAS  Google Scholar 

  46. Lagana, A., Spatola, P., Ochoa de Aspuru, G., Ferraro, G., Gervasi, O. (1997) Chem. Phys. Lett., 267, 403.

    CAS  Google Scholar 

  47. Ferraro, G., Laganà, A. Scattering calculations using a nonorthogonal coordinate formalism (in preparation).

    Google Scholar 

  48. Garcia, E., Laganà, A. (1995) J. Chem. Phys. 103, 5410.

    Article  CAS  Google Scholar 

  49. Ochoa de Aspuru, G., Clary, D.C. (1998) J. Phys. Chem. A 102, 9631.

    CAS  Google Scholar 

  50. Ceballos, A., Garcia, E., Rodriguez, A., Laganà, A. (2000). Chem. Phys. Letters 333(6) 471.

    Google Scholar 

  51. Rodriguez, A., Garcia, E., Hernández, M.L., Laganà, A., (2002), Chem. Phys. Letters 3360, 2.

    Google Scholar 

  52. Zhang, J.Z.H. (1998) Theory and Application of Quantum Molecular Dynamics, World Scientific.

    Google Scholar 

  53. Carter, S., Handy, C. (1982) Mol. Phys., 47, 1445.

    CAS  Google Scholar 

  54. Carter, S., Handy, C. (1986) Mol. Phys., 57, 175.

    CAS  Google Scholar 

  55. Lara, M., Aguado, A., Paniagua, M., Roncero, O. (2000) J. Chem. Phys., 113, 1781.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

LaganÀ, A. (2004). Towards a Grid Based Universal Molecular Simulator. In: Lagana, A., Lendvay, G. (eds) Theory of Chemical Reaction Dynamics. NATO Science Series II: Mathematics, Physics and Chemistry, vol 145. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2165-8_17

Download citation

Publish with us

Policies and ethics