Skip to main content

Dynamics Studies of the O(3P) + Ch4, C2H6 and C3H8 Reactions

  • Conference paper
Theory of Chemical Reaction Dynamics

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 145))

Abstract

We report theoretical simulations of hyperthermal O(3P) collisions with CH4. C2H6 and C3H8 that are related to erosion processes in low Earth orbit (LEO). In the first part of this paper, we use electronic structure calculations to show that at energies well below those accessible in LEO, there is a whole new body of reaction channels that are open in addition to the well known lowest barrier one, H abstraction to give OH + alkyl radicals. For instance, O addition to the hydrocarbon followed by H elimination to give alkoxy radicals + H is possible through barriers of about 2 eV. Similar barrier heights are found for direct carbon-carbon bond breakage processes that can take place in hydrocarbons containing C-C bonds (ethane and propane). In the second part of this paper, we carry out reaction dynamics calculations using the quasiclassical trajectory method in conjunction with a novel semiempirical Hamiltonian termed MSINDO. Cross section calculations reveal that H elimination and C- C breakage are both competitive with H abstraction in the reactions of O(3P) with ethane and propane. In O(3P) + methane, elimination is even more important than H abstraction under LEO conditions. Energy distributions for the majority channels show different patterns according to the kinematies of the products that are formed. For H abstraction to give OH, most of the energy is released as product translation, while OH is fairly cold. For H elimination, most energy is released as internal energy of the oxyradical. Angular distributions also depend on the product channel. H abstraction shows a trend with collision energy that matches that of reactions undergoing a direct mechanism. Near threshold H elimination and C-C breakage angular distributions reveal the presence of two different saddle points that connect reagents and products for each process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. Warnatz, in Combustion Chemistry, ed. W. C. Gardiner, Jr. (Springer-Verlag, Berlin, 1984).

    Google Scholar 

  2. D. L. Baulch, C. J. Cobos, R. A. Cox, C. Esscr, P. Frank, T. H. Just, J. A. Kcrr, M. J. Pilling, J. J. Troe, R. W. Walker, and J. Warnatz, J. Phys. Chem. Ref. Data 21, 445 (1992).

    Google Scholar 

  3. D. L. Baulch, C. J. Cobos, R. A. Cox, C. Esser, P. Frank, T. H. Just, J. A. Kerr, M. J. Pilling, J. J. Troe, R. W. Walker, and J. Warnatz, J. Phys. Chem. Ref. Data 21, 468 (1992).

    Google Scholar 

  4. N. Cohen and K. E. Westberg, J. Phys. Chem. Ref. Data 20, 1218 (1991).

    Google Scholar 

  5. P. Andresen and A. C. Luntz, J. Chem. Phys. 72, 5842 (1980); A. C. Luntz and P. Andresen, ibid 72, 5851 (1980).

    Article  CAS  Google Scholar 

  6. G. M. Sweeney, A. Watson, and K. G. McKendrick, J. Chem. Phys. 106, 9172 (1997).

    CAS  Google Scholar 

  7. F. Ausfelder and K. G. McKendrick, Prog. React. Kinet. Mec. 25, 299 (2000).

    CAS  Google Scholar 

  8. T. Suzuki and E. Hirota, J. Chem. Phys. 98, 2387 (1993).

    Article  CAS  Google Scholar 

  9. L. J. Leger and J. T. Visentine, J. Spacecraft Rockets 23, 505–511 (1986).

    CAS  Google Scholar 

  10. L. E. Murr and W. H. Kinard, Am. Sci. 81, 152–165 (1993).

    Google Scholar 

  11. A. Jursac, U.S. Standard Atmosphere, (US. Government Printing Office, Washington D.C., 1976).

    Google Scholar 

  12. Z. A. Iskanderkova, J. I. Klciman, Y. Gudimenko, and R. C. Tennyson, J. Spacecraft Rockets 32, 878–884 (1995).

    Google Scholar 

  13. B. Cazaubon, A. Paillous, J. Siffre, and R. Thomas, J. Spacecraft Rockets 35, 797–804 (1998).

    CAS  Google Scholar 

  14. T. K. Minton and D. J. Garton, in Chemical Dynamics in Extreme Environments, ed. R. A. Dressler (World Scientific, Singapore, 2001) p. 420–463.

    Google Scholar 

  15. B. A. Banks, K. K. de Groth, S. L. Rutledge, F. J. DiFilippo, Prediction of In-Space Durability of Protected Polymers Based on Ground Laboratory Thermal Energy Atomic Oxygen, (NASA, Washington D.C., 1996).

    Google Scholar 

  16. D. J. Garton, T. K. Minton, D. Troya, R. Z. Pascual, and G. C. Schatz, 2003, Hyper-thermal Reactions of O(3P) Atoms with Alkanes: Observations of Novel Reaction Pathways in Crossed-Beams and Theoretical Studies, J. Phys.Chem. A, in press, ASAP paper 10.1021/jp0226026.

    Google Scholar 

  17. D. Troya, R. Z. Pascual, and G. C. Schatz, 2003, Theoretical Studies of the O(3P) + Methane Reaction, J. Phys. Chem. A, in press.

    Google Scholar 

  18. D. Troya, R. Z. Pascual, D. J. Garton, T. K. Minton, and G. C. Schatz, 2003, Theoretical Studies of the O(3P) + Ethane Reaction, J. Phys. Chem. A, in press. ASAP paper 10.1021/jp034028j.

    Google Scholar 

  19. D. Troya, G. C. Schatz, D. J. Garton, and T. K. Minton, 2003, Crossed-Beams and Theoretical Studies of the O(3P) + CH4 →H + OCH3 Reaction Excitation Function, in preparation.

    Google Scholar 

  20. D. J. Garton, T. K. Minton, B. Maiti, D. Troya, and G. C. Schatz, J. Chem. Phys. 118, 1585 (2003).

    Article  CAS  Google Scholar 

  21. J. J. P. Stewart, J. Comput. Chem. 10, 209–220 (1989).

    CAS  Google Scholar 

  22. B. Ahlswede and K. Jug, J. Comput. Chem. 20, 563–571 (1999).

    CAS  Google Scholar 

  23. T. Brodow, G. Geudtner, and K. Jug, J. Comput. Chem. 22, 861–887 (2001).

    Google Scholar 

  24. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbcrt, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, J. Comput. Chem. 14, 1347 (1993).

    Article  CAS  Google Scholar 

  25. Jaguar 4.1, Schrodinger. Inc., Portland, Oregon, 2000.

    Google Scholar 

  26. W.B. DeMore, S.P. Sander, D.M. Golden, R.F. Hampson, M.J. Kurylo, C.J. Howard, A.R. Ravishankara, C.E. Kolb, M.J. Molina, ChemicalKinetics and Photochemical Data for Use in Stratospheric. Modeling. Evaluation No. 11,JPL Publ. 94-26; NASA Panel for Data Evaluation, Jet PropulsionLaboratory, (California Institute of Technology, Pasadena, 1994) p. 194.

    Google Scholar 

  27. S. J. Blanskby and G. B. Ellison, Acc. Chem. Res. 36, 255–263 (2003).

    Google Scholar 

  28. A. Gindulyte, L. Massa, B. A. Banks, and S. K. Rutledge, J. Phys. Chem. A 104, 9976 (2000).

    Article  CAS  Google Scholar 

  29. X. Liu, R. L. Gross, and A. G. Suits, J. Chem. Phys. 116, 5341 (2002).

    CAS  Google Scholar 

  30. X. Liu, R. L. Gross, G. E. Hall, J. T. Muekermann, and A. G. Suits, J. Chem. Phys. 117, 7947 (2002).

    CAS  Google Scholar 

  31. M. J. Lakin, D. Troya, G. Lendvay, M. González, and G. C Schatz, J. Chem. Phys. 115, 5160 (2001).

    CAS  Google Scholar 

  32. R. Z. Pascual, G. C. Schatz, G. Lendvay, and D. Troya, J. Phys. Chem. A 106, 4125 (2002).

    Article  CAS  Google Scholar 

  33. D.-H. Lu and W. H. Hase, J. Chem. Phys. 91, 7490 (1989).

    Article  CAS  Google Scholar 

  34. R. D. Levine and R. B. Bernstein, Molecular Reaction Dynamics andChemical Reactivity (Oxford University Press, New York, 1987).

    Google Scholar 

  35. J. Zhang, D. J. Garton, and T. K. Minton, J. Chem. Phys. 117, 6239 (2002).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Troya, D., Schatz, G.C. (2004). Dynamics Studies of the O(3P) + Ch4, C2H6 and C3H8 Reactions. In: Lagana, A., Lendvay, G. (eds) Theory of Chemical Reaction Dynamics. NATO Science Series II: Mathematics, Physics and Chemistry, vol 145. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2165-8_15

Download citation

Publish with us

Policies and ethics