Skip to main content

Strong Acceleration of Chemical Reactions Arising Through the Effects of Rotational Excitation of Reagents on Collision Geometry

  • Conference paper
Theory of Chemical Reaction Dynamics

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 145))

  • 1235 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smith, I.W.M. (1980) Kinetics and Dynamics of Elementary Gas Reactions, Butterworths, London.

    Google Scholar 

  2. Tolman, R.C. (1927) Statistical Mechanics with Applications for Physics and Chemistry, Chemical Catalog Co., New York.

    Google Scholar 

  3. Frost, A.A. and Pearson, R.G. (1953). Kinetics and Mechanisms, Wiley, New York.

    Google Scholar 

  4. Present, R.D. (1955) Note on the simple collision theory of bimolecular reactions Proc. Natl. Acad. Sci. USA 41, 415–417.

    CAS  Google Scholar 

  5. Smith, I.W.M. (1982) A new collision theory for bimolecular reactions. J. Chem. Ed. 59, 9–14.

    CAS  Google Scholar 

  6. Levine, R.D. and Bernstein, R.B. (1984) Opacity analysis of steric requirements in elementary chemical reactions. Chem. Phys. Lett. 105, 467–471.

    Article  CAS  Google Scholar 

  7. Levine, R.D. (1990) The chemical shape of molecules: An introduction to dynamical stereochemistry. J. Phys. Chem. 94, 8872–8880.

    Article  CAS  Google Scholar 

  8. Johnston, H. (1966) GasPhase Reaction Rate Theory, Ronald, New York.

    Google Scholar 

  9. Levine R.D. and Bernstein, R.B. (1986) Rotational state dependence of the reactivity of oriented symmetric top molecules. Chem. Phys. Lett. 132, 11–15.

    Article  CAS  Google Scholar 

  10. Janssen, M.H.M. and Stolte, S. (1987) Calculation of steric effects in reactive collisions employing the angle-dependent line of centers model. J. Phys. Chem. 91, 5480–5486.

    CAS  Google Scholar 

  11. Gislason, E. A. and Sizun, M. (1991) An angle-dependent hard-sphere model for atom-diatom chemical reactions. J. Phys. Chem. 95, 8462–8466.

    Article  CAS  Google Scholar 

  12. Wiseman, F.L. and Rice, A.G. (1993) Modifications to the angle-dependent line of normals model for gas-phase reaction rate constants. J. Chem. Ed. 70, 914–920.

    CAS  Google Scholar 

  13. Connor, J.N.L., Whitehead, J.C. and Jakubetz, W (1987) Orientation dependence of the F + H2 reaction — analysis of the angle-dependent line-of-centers model. J. Chem. Soc., Faraday Trans. 83, 1703–1718.

    CAS  Google Scholar 

  14. Connor, J.N.L. and Jakubetz, W. (1993) Orientation dependence of the F + H2 and H + F2 reactions using the line-of-centers model with angle-dependent collision diameters and barrier heights. J. Chem. Soc., Faraday Trans. 89, 1481–1486.

    Article  CAS  Google Scholar 

  15. Evans, G.T., She, R.S.C. and Bernstein, R.B. (1985) A simple kinetic theory model of reactive collisions of rigid nonspherical molecules. J. Chem. Phys. 82, 2258–2266

    Article  CAS  Google Scholar 

  16. Evans, G.T. (1987) A simple kinetic theory model of reactive collisions. III. Convex loaded bodies. J. Chem. Phys. 86, 3852–3858.

    CAS  Google Scholar 

  17. She, R.S.C., Evans, G.T. and Bernstein, R.B. (1986) A simple kinetic theory model of reactive collisions. II. Nonrigid spherical potential with angle-dependent reactivity. J. Chem. Phys. 84, 2204–2211.

    Article  CAS  Google Scholar 

  18. Evans, G.T., van Kleef, E. and Stolte, S. (1990) Chemical reaction dynamics: Combination of two models. J. Chem. Phys. 93, 4874–4883.

    CAS  Google Scholar 

  19. Esposito, M. and Evans, G.T. (1992) Steric effects and cones of reaction in gas-phase reactions. J. Chem. Phys. 97, 4846–4858.

    Article  CAS  Google Scholar 

  20. Miklavc, A., Perdih, M. and Smith, I.W.M. (1995) The role of kinematic mass in simple collision models of activated bimolecular reactions. Chem. Phys. Lett. 241, 415–422.

    Article  CAS  Google Scholar 

  21. Perdih, M., Miklavc, A. and Smith, I.W.M. (1997) Kinematic mass model of activated bimolecular reactions: Molecular shape effects and zero-point energy corrections. J. Chem. Phys. 106, 5478–5493.

    Article  CAS  Google Scholar 

  22. Perdih, M., Smith, I.W.M. and Miklavc, A. (1998) Kinematic mass model of activated bimolecular reactions: Reactions of vibrationally excited reactants. J. Phys. Chem. A 102, 3907–3915.

    Article  CAS  Google Scholar 

  23. Hirschfelder, J.O. and Wigner, E.P. (1939) Some quantum-mechanical considerations in the theory of reactions involving an activation energy. J. Chem. Phys. 7, 616–628.

    Article  CAS  Google Scholar 

  24. Marcus, R.A. (1966) On the analytical mechanics of chemical reactions. Quantum mehanics of linear collisions. J. Chem. Phys. 45, 4493–4499.

    CAS  Google Scholar 

  25. Marcus, R.A. (1966) On the analytical mechanics of chemical reactions. Classical mechanics of linear collisions. J. Chem. Phys. 45, 4500–4504.

    CAS  Google Scholar 

  26. Truhlar, D.G., Isaacson, A.D. and Garrett, B.C. (1985) in M.J. Baer(ed.) Theory of Chemical Reaction Dynamics, CRC Press, Boca Raton, pp. 65–137.

    Google Scholar 

  27. Smith, I.W.M. (1990) Vibrational adiabaticity in chemical reactions. Acc. Chem. Res. 23. 101–107.

    Article  CAS  Google Scholar 

  28. Miklavc, A. and Fischer, S.F. (1978) Semi-classical theory of collision-induced vibrational-rotational transitions. Application to methyl halides. J. Chem. Phys. 69, 281–287.

    Article  CAS  Google Scholar 

  29. Miklavc, A. (1980) On the semi-classical theory of collision-induced vibrational-rotational transitions in molecules. J.Chem. Phys. 72, 3805–3808.

    Article  CAS  Google Scholar 

  30. Miklavc, A. (1980) Semi-classical theory of vibrational, rotational and translational energy exchange in collisions of polyatomic molecules. Mol. Phys. 39, 855–864.

    CAS  Google Scholar 

  31. Miklavc, A. (1983) Quantum theory of vibrational, rotational and translational energy exchange in collisions of polyatomic molecules. Application to methyl halides. J. Chem. Phys. 78, 4502–4514.

    Article  CAS  Google Scholar 

  32. Cannon, B.D. and Smith, I.W.M. (1984) The relaxation of HCl(011) by V-T, R and V-V energy transfer. Chem. Phys. 83, 429–443.

    Article  CAS  Google Scholar 

  33. Miklavc, A. and Smith, I.W.M. (1988) Vibrational relaxation of C2H2 and C2D2 by vibration-rotation, translation (V-R,T) energy transfer. J. Chem. Soc., Faraday Trans. 284, 227–238.

    Google Scholar 

  34. Kapralova, G.A., Nikitin, E.E. and Chaikin, A.M. (1968) Non-empirical calculations of the probabilities of vibrational transitions in hydrogen halide molecules. Chem. Phys. Lett. 2, 581–583.

    Article  CAS  Google Scholar 

  35. Zittel, P.F. and Moore, C.B. (1973) Model for V→T, R relaxation — CH4 and CD4 mixures. J. Chem. Phys. 58, 2004–2014.

    CAS  Google Scholar 

  36. Steele Jr, R.V. and Moore, C.B. (1974) V→T, R energy transfer in HCl-and DCl-rare gas mixtures. J. Chem. Phys. 60, 2794–2799.

    Article  CAS  Google Scholar 

  37. Haug, K., Schwenke, D.W., Shima, Y., Truhlar, D.G., Zhang, Y. and Kouri, K.J. (1986) L-2 solution of the quantum-mechanical reactive scattering problem. The threshold energy for D + H2(v = 1) → HD + H. J. Phys. Chem. 90, 6751–6759.

    Article  Google Scholar 

  38. Haug, K., Schwenke, D.W., Truhlar, D.G., Zhang, Y., Zhang, J.Z.H. and Kouri, K.J. (1987) Accurate quantum-mechanical reaction probabilities for the reaction O + H2 → OH + H. J. Chem. Phys. 87, 1892–19894.

    Article  CAS  Google Scholar 

  39. Smith, I.W.M. (1981) Combining transition-state theory with quasiclassical trajectory calculations. 1. Collinear collisions. J. Chem. Soc., Faraday Trans. 277, 747–759.

    Google Scholar 

  40. Frost, R.J. and Smith, I.W.M. (1987) Combining transition-state calculations with quasi-classical trajectory calculations. 2. Collinear collisions involving vibrationally excited reagents. Chem. Phys. 111, 389–400.

    Article  CAS  Google Scholar 

  41. Frost, R.J. and Smith, I.W.M. (1987) Combining transition-state calculations with quasi-classical trajectory calculations. 3. Application to the 3-dimensional H + H2(v) reaction. Chem. Phys. 117, 421–438.

    Article  CAS  Google Scholar 

  42. Frost, R.J. and Smith, I.W.M. (1987) Combining transition-state theory with quasiclassical trajectory calculations. 4. Application to the nitrogen exchange reaction N + N2(v). Chem. Phys. Lett. 140, 499–505.

    Article  CAS  Google Scholar 

  43. Frost, R.J. and Smith, I.W.M. (1988) Combining transition-state theory with quasiclassical trajectory calculations. 5. Canonical calculations on the reaction: F + H2(v = 0)→ HF(v) + H. J. Chem. Soc., Faraday Trans. 2 84, 1825–1835.

    CAS  Google Scholar 

  44. Frost, R.J. and Smith, I.W.M. (1988) Combining transition-state theory with quasiclassical trajectory calculations. 6. Microcanonical calculations on the reaction F + H2(v = 0)→ HF(v) + H. J. Chem.Soc., Faraday Trans. 2 84, 1837–1846.

    CAS  Google Scholar 

  45. Loesch, H. (1986) A slidig mass model to rationalize effects of reagent rotation on reaction cross sections. Chem. Phys. 104, 213–227.

    Article  CAS  Google Scholar 

  46. Loesch, H. (1987) The effect of reagent rotation on reaction cross sections for O(3P) + HCl→ OH + Cl: A rationale for contradictory predictions. Chem. Phys. 112, 85–93.

    Article  CAS  Google Scholar 

  47. Kornweitz, H., Persky, A., Schechter I. and Levine, R.D. (1990) Steric hindrance can be probed via the dependence of the reactivity on reagent rotation: O + HCl. Chem. Phys. Lett. 169, 489–496.

    Article  CAS  Google Scholar 

  48. Kornweitz, H., Persky, A. and Levine, R.D. (1991) Kinematic mass effect in the dynamical stereochemistry of activated bimolecular reactions. J. Phys. Chem. 95, 1621–1625.

    Article  CAS  Google Scholar 

  49. Persky, A. and Broida, M. (1984) Quasiclassical trajectory study of the reaction O(3P) + HCl → OH + Cl. The effects of vibrational excitation, rotational excitation and isotopic substitution on the dynamics. J. Chem. Phys. 81, 4352–4362.

    Article  CAS  Google Scholar 

  50. Levine, R.D. and Bernstein, R.B. (1987) Molecular Reaction Dynamics and Chemical Reactivity, Oxford University Press, New York.

    Google Scholar 

  51. Kuntz, P.J., Nemeth, E.M., Polanyi, J.C., Rosner, S.D. and Young C.E. (1966). Energy distribution among products of exothermic reactions, II. Repulsive, mixed, and attractive energy release. J. Chem. Phys. 44, 1168–1184.

    Article  CAS  Google Scholar 

  52. Polanyi, J.C. (1972) Some concepts in reaction dynamics. Acc. Chem. Res. 5, 161-&

    Article  CAS  Google Scholar 

  53. Polanyi, J.C. (1987) Some concepts in reaction dynamics. Science 236, 680–690.

    CAS  Google Scholar 

  54. Bauer, S.H. (1978) How energy accumulation and disposal affect rates of reactions. Chem. Rev. 78, 147–184.

    Article  CAS  Google Scholar 

  55. Kneba, M. and Wolfrum, J. (1980) Bimolecular reactions of vibrationally excited molecules. Annu. Rev. Phys. Chem. 31, 47–79.

    Article  CAS  Google Scholar 

  56. Leone, S.R. (1984) State-resolved molecular reaction dynamics. Annu. Rev. Phys Chem. 35, 109–135.

    Article  CAS  Google Scholar 

  57. Vandelinde, S.R. and Hase, W.L. (1989) A direct mechanism for SN2 nucleophilic substitution enhanced by mode-selective vibrational excitation. J. Amer. Chem. Soc. 111, 2349–2351.

    CAS  Google Scholar 

  58. Sathyamurthy, N. (1983) Effects of reagent rotation on elementary bimolecular exchange reactions. Chem. Rev. 83, 601–618.

    Article  CAS  Google Scholar 

  59. Grote, W., Hoffmeister, M., Schleysing, R., Zerhau-Dreihofer, H. and Loesch, H. (1988) Rotational and steric effects in three centre reactions in J.C. Whitehead (ed.) Selectivity in Chemical Reactions, Kluwer Academic Publishers, The Hague, pp. 47–78.

    Google Scholar 

  60. Mayne, H.R. (1990) Effect of reactant rotation on hydrogen atom transfer. J. Amer. Chem. Soc. 112, 8165–8166.

    Article  CAS  Google Scholar 

  61. Miklavc, A., Perdih, M. and Smith, I.W.M. (2000) A new mechanism for the enhancement of activated bimolecular reactions by rotational excitation. J. Chem. Phys. 112, 8813–8818.

    Article  CAS  Google Scholar 

  62. Miklavc, A. (2001) Strong acceleration of chemical reactions occuring through the effects of rotational excitation on collision geometry. ChemPhysChem. 8/9, 552–555

    Google Scholar 

  63. Song, J.-B. and Gislason, E.A. (1996) Theoretical study of the effect of reagent rotation on the reaction of O + H2(v,j). Chem. Phys. 202, 1.

    Article  CAS  Google Scholar 

  64. Johnson, B.R. and Winter, N.W. (1977) Classical trajectory study of effect of vibrational energy on reaction of molecular hydrogen with atomic oxygen. J. Chem. Phys 66, 4116–4120.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Miklavc, A. (2004). Strong Acceleration of Chemical Reactions Arising Through the Effects of Rotational Excitation of Reagents on Collision Geometry. In: Lagana, A., Lendvay, G. (eds) Theory of Chemical Reaction Dynamics. NATO Science Series II: Mathematics, Physics and Chemistry, vol 145. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2165-8_14

Download citation

Publish with us

Policies and ethics