Skip to main content

Reaction Dynamics of Polyatomic Systems: FROM A + BCD → AB + CD to X + YCZ3 → XY + CZ3

  • Conference paper
Theory of Chemical Reaction Dynamics

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 145))

  • 1231 Accesses

Abstract

Over the last decade, advances in quantum dynamics, notably the development of the initial state selected time-dependent wave packet method, coupled with advances in constructing ab initio potential energy surfaces, have made it possible for some four-atom reactions to be addressed from first principles, in their full six internal degrees of freedom. Attempts have been made to extend the time-dependent wave packet method to reactions with more internal degrees of freedom. Here, we review the full-dimensional theory for the A + BCD four-atom reaction and use it to guide the reduced-dimensionality treatment of the X + YCZ3 reaction. Comparison of rigorous calculations with recent experiments are presented for (a) the benchmark H + H2O abstraction reaction, and (b) the H + CH4 → H2 + CH3 reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Schatz, G.C. and Kuppermann, A. (1975) Quantum mechanical reactive scattering: An accurate three-dimensional calculation, J. Chem. Phys. 62, 2502–2504.

    Google Scholar 

  2. Elkowitz, A.B. and Wyatt, R.E. (1975) Quantum mechanical reaction cross sections for the three-dimensional hydrogen exchange reaction, J. Chem. Phys. 62, 2504–2506.

    CAS  Google Scholar 

  3. Walker, R.B., Stechel, E. and Light, J.C. (1978) Accurate H3 dynamics on an accurate H3 potential surface, J. Chem. Phys. 69, 2922–2923.

    CAS  Google Scholar 

  4. Manolopoulos, D.E. and Clary, D.C. (1989) Quantum calculations on reactive collisions, Annu. Rep. Prog. Chem. Sect. C86, 95–118; and references therein.

    Google Scholar 

  5. Miller, W.H. (1990) Recent advances in quantum mechanical reactive scattering theory, including comparison of recent experiments with rigorous calculations of the state-to-state cross sections for the H/D + H2→ H2/HD + H reactions, Annu. Rev. Phys. Chem. 41, 245–281; and references therein.

    CAS  Google Scholar 

  6. Clary, D.C. (1991) Quantum reactive scattering of four-atom reactions with nonlinear geometry: OH + H2 → H2O + H, J. Chem. Phys. 95, 7298–7310.

    Article  CAS  Google Scholar 

  7. Clary, D.C. (1992) Bond-selected reaction of HOD with H atoms, Chem. Phys. Lett. 192, 34–40.

    Article  CAS  Google Scholar 

  8. Wang, D. and Bowman, J.M. (1992) Reduced dimensionality quantum calculations of mode specificity in OH + H2 ↔ H2O + H, J. Chem. Phys. 96, 8906–8913.

    CAS  Google Scholar 

  9. Yang, M., Zhang, D.H., Collins, M.A. and Lee, S.-Y. (2001) Quantum dynamics on new potential energy surfaces for the H2 + OH→ H2O + H reaction, J. Chem. Phys. 114, 4759–4762.

    CAS  Google Scholar 

  10. Zhang, D.H., Yang, M. and Lee, S.-Y. (2002) Quantum dynamics of the D2 + OH reaction, J. Chem. Phys. 116, 2388–2394.

    CAS  Google Scholar 

  11. Zhang, D.H., Yang, M. and Lee, S.-Y. (2002) Accuracy of the centrifugal sudden approximation in the H + H2O reaction and accurate integral cross sections for the H + H2O → H2 + OH abstraction reaction, J. Chem. Phys. 117, 10067–10072.

    CAS  Google Scholar 

  12. Zhang, D.H., Xie, D., Yang, M. and Lee, S.-Y. (2002) State-to-state integral cross section for the H + H2O→ H2 + OH reaction, Phys. Rev. Lett. 89, 283203 (1–4).

    Google Scholar 

  13. Zhang, D.H. and Zhang, J.D.H. (1993) Accurate quantum calculations for the benchmark reaction H2 + OH → H2O + H in five-dimensional space: Reaction probabilities for J = 0, J. Chem. Phys. 99, 5615–5618.

    CAS  Google Scholar 

  14. Zhang, D.H. and Zhang, J.D.H. (1994) Accurate quantum calculations for H2 + OH → H2O + H: Reaction probabilities, cross sections and rate constants, J. Chem. Phys. 100, 2697–2706.

    CAS  Google Scholar 

  15. Huarte-Larranaga, F. and Manthe, U. (2000) Full dimensional quantum calculations of the CH4 + H→CH3 + H2 reaction rate, J. Chem. Phys. 113, 5115–5122.

    CAS  Google Scholar 

  16. Huarte-Larranaga, F. and Manthe, U. (2001) Quantum dynamics of the CH4 + H→CH3 + H2 reaction: Full dimensional and reduced dimensionality rate constants, J. Phys. Chem. A 105, 2522–2529.

    Article  CAS  Google Scholar 

  17. Huarte-Larranaga, F. and Manthe, U. (2002) Vibrational excitation in the transition state: The CH4 + H →CH3 + H2 reaction rate constant in an extended temperature interval, J. Chem. Phys. 116, 2863–2869.

    CAS  Google Scholar 

  18. Meyer, H.D., Manthe, U. and Cederbaum, L.S. (1990) The multiconfigurational time-dependent Hartree approach, Chem. Phys. Lett. 165, 73–78.

    Article  CAS  Google Scholar 

  19. Beck, M.H., Jackle, A., Worth, G.A. and Meyer, H.D. (2000) The multiconfigurational time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagating wavepackets, Phys. Rep. 324, 1–105; and references therein.

    Article  CAS  Google Scholar 

  20. Sukiasyan, S. and Meyer, H.D. (2002) Reaction cross sections for the H + D2 (v0=1) → HD + D and D + H2 (v0=1) → DH + H systems. A multiconfigurational time-dependent Hartree (MCTDH) wave packet propagation study, J. Chem. Phys. 116, 10641–10647.

    Article  CAS  Google Scholar 

  21. Clary, D.C. (1994) Four-atom reaction dynamics, J. Phys. Chem. 98, 10678–10688.

    Article  CAS  Google Scholar 

  22. Clary, D.C. (1995) Product CN Rotational Distributions from the H + HCN reaction, J. Phys. Chem. 99, 13664–13669.

    Article  CAS  Google Scholar 

  23. Clary, D.C. and Palma, J. (1997) Quantum dynamics of the Walden inversion reaction Cl + CH3Cl → ClCH3 + Cl, J. Chem. Phys. 106, 575–583.

    Article  CAS  Google Scholar 

  24. Wang, D. and Bowman, J.M. (2001) A reduced dimensionality, six-degree-of-freedom, quantum calculation of the H + CH4 → H2+ CH3 reaction, J. Chem. Phys. 115, 2055–2061.

    CAS  Google Scholar 

  25. Bowman, J.M. (2002) Overview of reduced dimensionality quantum approaches to reactive scattering, Theo. Chem. Acc. 108, 125–133; and references therein.

    CAS  Google Scholar 

  26. Yu, H. and Nyman, G. (1999) Four-dimensional quantum scattering calculations on H + CH4 → H2+ CH3 reaction, J. Chem. Phys. 111, 3508–3516.

    CAS  Google Scholar 

  27. Yu, H. and Nyman, G. (2000) Quantum dynamics of the O(3P) + CH4 → OH + CH3 reaction: An application of the rotating bond umbrella model and spectral transform subspace iteration, J. Chem. Phys. 112, 238–247; and references therein.

    CAS  Google Scholar 

  28. Zhang, J.Z.H. (1999) The semirigid vibrating rotor target model for quantum polyatomic reaction dynamics, J. Chem. Phys. 111, 3929–3939.

    CAS  Google Scholar 

  29. Zhang, D.H. and Zhang, J.Z.H. (2000) The semirigid vibrating rotor target model for atom-polyatom reaction: Application to H + H2O → H2 + OH, J. Chem. Phys. 112, 585–591.

    CAS  Google Scholar 

  30. Wang, M.L. and Zhang, J.Z.H. (2002) Generalized semirigid vibrating rotor target model for atom-polyatom reaction: Inclusion of umbrella mode for the H + CH4 reaction, J. Chem. Phys. 117, 3081–3087; and references therein.

    CAS  Google Scholar 

  31. Sutherland, J.W., Su, M.-C. and Michael, J.V. (2001) Rate constants for H + CH4, CH3 + H2, and CH4 dissociation at high temperature, Int. J. Chem. Kinet. 33, 669–684; and references therein.

    Article  CAS  Google Scholar 

  32. Bryukov, M.G., Slagle, I.R. and Knyazev, V.D. (2001) Kinetics of reactions of H atoms with methane and chlorinated methanes, J. Phys. Chem. 105, 3107–3122.

    CAS  Google Scholar 

  33. Takayanagi, T. (1996) Reduced dimensionality calculations of quantum reactive scattering for the H + CH4 → H2+ CH3 reaction, J. Chem. Phys. 104, 2237–2242.

    Article  CAS  Google Scholar 

  34. Bowman, J.M., Wang, D., Huang, X., Huarte-Larranaga and Manthe, U. (2001) The importance of an accurate CH4 vibrational partition function in full dimensionality calculations of the H + CH4 → H2+ CH3 reaction, J. Chem. Phys. 114, 9683–9684.

    CAS  Google Scholar 

  35. Pu, J. and Truhlar, D.G. (2002) Parametrized direct dynamics study of rate constants of H with CH4 from 250–2400K, J. Chem. Phys. 116, 1468–1478.

    Article  CAS  Google Scholar 

  36. Palma, J., Echave, J. and Clary, D.C. (2002) Rate constants for the CH4 + H→ CH3 + H2 reaction calculated with a generalized reduced-dimensionality method, J. Phys. Chem. A 106, 8256–8260.

    Article  CAS  Google Scholar 

  37. Yang, M., Zhang, D.H. and Lee, S.-Y. (2002) A seven-dimensional quantum study of the H + CH4 reaction, J. Chem. Phys. 117, 9539–9542.

    CAS  Google Scholar 

  38. Rose, M.E. (1957) Elementary Theory of Angular Momentum, Wiley, New York.

    Google Scholar 

  39. Fleck, Jr., J.A., Morris, J.R. and Feit, M.D. (1976) Time-dependent propagation of high energy laser beams through the atmosphere, Appl. Phys. 10, 129–160.

    Article  Google Scholar 

  40. Palma, J. and Clary, D.C. (2000) A quantum model Hamiltonian to treat reactions of the type X + YCZ3 → XY + CZ3: Application to O(3.P) + CH4 → OH + CH3, J. Chem. Phys. 112, 1859–1867.

    Article  CAS  Google Scholar 

  41. Zhang, J.Z.H. (1999) Theory and Applications of Quantum Molecular Dynamics, World Scientific, Singapore.

    Google Scholar 

  42. (a) Walch, S.P. and Dunning, T.H. (1980) A theoretical study of the potential energy surface forOH + H2, J. Chem. Phys. 72, 1303–1311; (b) Schatz, G.C. (1981) A quasiclassical trajectory study of reagent vibrational excitation effects in the OH + H2 → H2O + H reaction, J. Chem. Phys. 74, 1133–1139; (c) Elgersma, H. and Schatz, G.C. (1981) A quasiclassical trajectory study of mode specific reaction rate enhancements in H + H2O(v1, v2, v3) → OH + H2, Intl. J. Quantum Chem., Quantum Chem. Symp. 15, 611–619.

    CAS  Google Scholar 

  43. Bettens, R.P., Collins, M.A., Jordan, M.J.T. and Zhang, D.H. (2000) Ab initio potential energy surface for the reactions between H2O and H, J. Chem. Phys. 112, 10162–10172.

    Article  CAS  Google Scholar 

  44. Zhang, D.H., Collins, M.A. and Lee, S.-Y. (2000) First principles theory for the H + H2O, D2O reactions, Science 290, 961–963.

    CAS  Google Scholar 

  45. (a) Yang, M., Zhang, D.H., Collins, M.A. and Lee, S.-Y. (2001) Quantum dynamics on new potential energy surfaces for the H2 + OH → H2O + H reaction J. Chem. Phys. 114, 4759–4762; (b) ibid. (2001) Ab initio potential energy surfaces for the reactions OH + H2 ↔ H2O + H, J. Chem. Phys. 115,174–178.

    CAS  Google Scholar 

  46. Collins, M.A. (2002) Molecular potential energy surfaces for chemical reaction dynamics, Theor. Chem, Acc. 108, 313–324.

    CAS  Google Scholar 

  47. Steckler, R., Dykema, K.J., Brown, F.B., Hancock, G.C., Truhlar, D.G. and Valencich, T. (1987) A comparative study of potential energy surfaces for CH3+ H2↔ CH4 + H, J. Chem. Phys. 87, 7024–7035; and references therein.

    Article  CAS  Google Scholar 

  48. Jordan, M.J.T. and Gilbert, R.G. (1995) Classical trajectory studies of the reaction CH4 + H→ CH3 + H2, J. Chem. Phys. 102, 5669–5682.

    CAS  Google Scholar 

  49. Joseph, T.R., Steckler, R. and Truhlar, D.G. (1987) A new potential energy surface for the CH3 + H2 ↔ CH4 + H reaction: Calibration and calculation of rate constants and kinetic isotope effects by variational transition state theory and semi-classical tunneling calculations, J. Chem. Phys. 87, 7036–7049.

    Article  CAS  Google Scholar 

  50. Duchovic, R.J., Hase, W.L. and Schlegel, H.B. (1984) Analytic function for the H + CH3 ↔ CH4 potential energy surface, J. Phys. Chem. 88, 1339–1347.

    Article  CAS  Google Scholar 

  51. Zhang, D.H., Yang, M., Lee, S.-Y. and Collins, M.A. (2003) Quantum dynamics study of the H + CH4 → H2 + CH3 reaction (in preparation).

    Google Scholar 

  52. Zhang, D.H., Yang, M. and Lee, S.-Y. (2002) Breakdown of the spectator model for the OH bonds in studying the H + H2O reaction, Phys. Rev. Lett. 89, 103201 (1–4).

    Google Scholar 

  53. Castillo, J.F., Aoiz, F.J. and Banares, L. (2002) A quasiclassical trajectory study of the H + H2O → OH + H2 reaction dynamics at 1.4 eV collision energy on a new ab initio potential energy surface, Chem. Phys. Lett. 356, 120–126.

    Article  CAS  Google Scholar 

  54. Brouard, M., Burak, I., Marinakis, S., Minayev, D., O’Keefe, P., Vallance, C., Aoiz, F.J., Banares, L., Castillo, J.F., Zhang, D.H., Xie, D., Yang, M., Lee, S.-Y. and Collins, M.A. (2003) Cross section for the H + H2O abstraction reaction: Experiment and theory, Phys. Rev. Lett. 90, 93201 (1–4).

    Article  CAS  Google Scholar 

  55. Troya, D., Gonzalez, M. and Schatz, G.C. (2001) A quasiclassical trajectory study of reactivity and product energy disposal in H + H2O, H + D2O and H + HOD, J. Chem. Phys. 114, 8397–8413.

    Article  CAS  Google Scholar 

  56. (a) Wu, G., Schatz, G.C., Lendvay, G., Fang, D.C. and Harding, L.B. (2000) A new potential energy surface and quasiclassical trajectory study of H + H2O → OH + H2, J. Chem. Phys. 113, 3150–3161; (b) ibid. (2000) Erratum, J. Chem. Phys. 113, 7712.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Zhang, D.H., Yang, M., Collins, M.A., Lee, SY. (2004). Reaction Dynamics of Polyatomic Systems: FROM A + BCD → AB + CD to X + YCZ3 → XY + CZ3. In: Lagana, A., Lendvay, G. (eds) Theory of Chemical Reaction Dynamics. NATO Science Series II: Mathematics, Physics and Chemistry, vol 145. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2165-8_13

Download citation

Publish with us

Policies and ethics