Skip to main content

The Rotating Bond Umbrella Model Applied to Atom-Methane Reactions

  • Conference paper
Theory of Chemical Reaction Dynamics

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 145))

  • 1233 Accesses

Abstract

To accurately treat chemical reactions, methods based on quantum dynamics may be required. For most reactions involving several atoms, applying full quantum dynamics is presently prohibitive in terms of computer demand. One option is then to use reduced dimensionality approaches. Here we will focus on the Rotating Bond Umbrella (RBU) model and its application to atom-methane reactions. In the RBU model four internal motions are treated explicitly, viz. the breaking and forming bonds, the umbrella motion, and a reactant bend motion, which becomes a product CH3 rotation. Hyperspherical coordinates are used. Here we describe how accurate boundary conditions are applied and how the matrices relating to the angular degrees of freedom are diagonalized using the iterative Guided Spectral Transform eigenproblem solver. We end by showing some illustrations of calculations for the A (A=H,O,Cl)+CH4 → HA + CH3 reactions and a deuterated analogue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. H. Miller and B. M. D. D. Jansen op de Haar, J. Chem. Phys., 86:6213, 1987.

    CAS  Google Scholar 

  2. G. Barinovs, N. Markovic, and G. Nyman, J. Chem. Phys., 111:6705–6711, 1999.

    Article  CAS  Google Scholar 

  3. M. S. Child. Mol. Phys., 12:401, 1967.

    CAS  Google Scholar 

  4. R. E. Wyatt, J. Chem. Phys., 51:3489, 1969.

    Article  CAS  Google Scholar 

  5. T. N. L. Connor and M. S. Child. Mol. Phys., 18:653, 1970.

    CAS  Google Scholar 

  6. R. B. Walker and E. F. Hayes. In D. C. Clary, editor, The Theory of Chemical Reaction Dynamics, page 105. Reidel, Dordrecht, 1986.

    Google Scholar 

  7. E. F. Hayes, P. Pendergast, and R. B. Walker. In J. M. Bowman, editor. Advances in Molecular Vibrations and Collision Dynamics: Reactive Scattering vol 2A. JAI, Greenwich, 1994.

    Google Scholar 

  8. G. Nyman. Chem. Phys. Lett., 240:571, 1995.

    Article  CAS  Google Scholar 

  9. G. Nyman. H. G. Yu, and R. B. Walker. J. Chem. Phys., 109:5896, 1998.

    Article  CAS  Google Scholar 

  10. David C Clary. J. Chem. Phys., 95:7298, 1991.

    Article  CAS  Google Scholar 

  11. G. Nyman and D. C. Clary. J. Chem. Phys., 100:3556, 1994.

    Article  CAS  Google Scholar 

  12. Q. Sun and J. M. Bowman. Int. J. Quant. Chem.:Quantum Chem. Symp., 23:115. 1989.

    CAS  Google Scholar 

  13. Q. Sun and J. M. Bowman. J. Chem. Phys., 92:1021, 1990.

    CAS  Google Scholar 

  14. Q. Sun and J. M. Bowman. J. Chem. Phys., 92:520L 1990.

    Google Scholar 

  15. Q. Sun, D. L. Yang, N. S. Wang, J. M. Bowman, and M. C. Lin. J. Chem. Phys., 93:4730, 1990.

    CAS  Google Scholar 

  16. J. M. Bowman and G. C. Schatz. Annu. Rev. Phys. Chem., 46:169–195. 1995.

    Article  CAS  Google Scholar 

  17. Hua-Gcn Yu and Gunnar Nyman. PCCP, 1:1181, 1999.

    CAS  Google Scholar 

  18. Hua-Gen Yu and Gunnar Nyman. J. Chem. Phys., 111:6693–6704, 1999.

    CAS  Google Scholar 

  19. Hua-Gen Yu and Gunnar Nyman. J. Chem. Phys., 110:7233–7244, 1999.

    CAS  Google Scholar 

  20. Fermin Huarte-Larranaga and Uwe Manthc. J. Chem. Phys., 116:2863, 2002.

    CAS  Google Scholar 

  21. Fermin Huarte-Larranaga and Uwe Manthc. J. Chem. Phys., 117:4635, 2002.

    CAS  Google Scholar 

  22. J. Z. H. Zhang. J. Chem. Phys., 111:3929, 1999.

    CAS  Google Scholar 

  23. M. L. Wang and J.Z.H. Zhang. J. Chem. Phys., 117:3081, 2002.

    CAS  Google Scholar 

  24. T. Peng and J.Z.H. Zhang. J. Chem. Phys., 105:6072, 1996.

    Article  CAS  Google Scholar 

  25. S. Althorpe. Faraday Discuss., 110:238, 1998.

    Google Scholar 

  26. J. C. Light and R. B. Walker. J. Chem. Phys., 65:4272, 1976.

    CAS  Google Scholar 

  27. E. B. Stechel, R. B. Walker, and J. C. Light. J. Chem. Phys., 69:3518, 1978.

    Article  CAS  Google Scholar 

  28. B. R. Johnson. J. Comput. Phys., 13:445, 1973.

    Article  Google Scholar 

  29. D. E. Manolopoulos. J. Chem. Phys., 85:6425, 1986.

    Article  CAS  Google Scholar 

  30. Hua-Gcn Yu and Gunnar Nyman. J.Chem. Phys., 110:11133–11140, 1999.

    CAS  Google Scholar 

  31. J. M. Bowman. J. Phys. Chem., 95:4960, 1991.

    CAS  Google Scholar 

  32. H. Sziehman, I. Last, A. Baram, and M. Baer. J. Phys. Chem., 97:6436, 1993.

    Google Scholar 

  33. H. Sziehman, I. Last, and M. Bacr. J. Phys. Chem., 98:828, 1994.

    Google Scholar 

  34. David C Clary. Scattering theory. J. Chem. Phys., 95:7298, 1991.

    Article  CAS  Google Scholar 

  35. D. H. Zhang and J. Z. H. Zhang. J. Chem. Phys., 103:6512, 1995.

    CAS  Google Scholar 

  36. G. Nyman and D. C. Clary. J. Chem. Phys., 101:5756, 1994.

    Article  CAS  Google Scholar 

  37. J. M. Bowman. Adv. Chem. Phys., 61:115, 1985.

    CAS  Google Scholar 

  38. Hua-Gen Yu and Gunnar Nyman. J. Chem. Phys., 112:238–247, 2000.

    CAS  Google Scholar 

  39. Hua-Gen Yu and Gunnar Nyman. J. Chem. Phys., 111:3508–3516, 1999.

    CAS  Google Scholar 

  40. G. Nyman and Hua-Gcn Yu. Rep. Prog. Phys., 63:1001, 2000.

    Article  CAS  Google Scholar 

  41. H. Goldstein. Classical Mechanics. Addison-Wesley, Oxford, 1980.

    Google Scholar 

  42. H. Wei. J. Chem. Phys., 106:6885–6900, 1997.

    CAS  Google Scholar 

  43. E. F. Hayes, P. Pendergast, and R. B. Walker. In J. M. Bowman, editor. Advances in Molecular Vibrations and Collision Dynamics: Reactive Scattering vol 2A. JAI, Greenwich, 1994.

    Google Scholar 

  44. J. J. Sakurai. Modem Quantum Mechanics. Addison-Wesley, New York. 1994.

    Google Scholar 

  45. R. B. Walker and E. F. Hayes. In D. C. Clary, editor. The Theory of Chemical Reaction Dynamics, page 105. Reidel, Dordrecht, 1986.

    Google Scholar 

  46. J. Römelt. Chem. Phys. Lett, 74:263, 1980.

    Article  Google Scholar 

  47. G. Nyman and D. C. Clary. J. Chem. Phys., 99:7774, 1993.

    Article  CAS  Google Scholar 

  48. Y. Saad. Numerical Methods for Large Eigenvalue Problems. Manchester University Press, Manchester, UK, 1992.

    Google Scholar 

  49. G. Nyman and Hua-Gen Yu. J. Comput. Math. Sci. Eng., 1:229, 2001.

    Google Scholar 

  50. K. W. Morton. Comput. Phys. Rep., 6:1, 1987.

    Google Scholar 

  51. A. Scrinzi and Nils Elander. J. Chem. Phys., 98:3866, 1993.

    Article  CAS  Google Scholar 

  52. A. Scrinzi. Comput. Phys. Commun., 86:67, 1995.

    CAS  Google Scholar 

  53. W. Yang and A. C. Poot. J. Chem. Phys., 92:5226, 1990.

    Google Scholar 

  54. R. A. Friesner. J. Chem. Phys., 85:14628, 1986.

    Article  Google Scholar 

  55. C. Schwartz. J. Math. Phys., 26:411, 1984.

    Google Scholar 

  56. I. P. Hamilton and J. C. Light. J. Chem. Phys.., 84:306, 1986.

    CAS  Google Scholar 

  57. D. K. Hoffman, M. Arnold, and D. J. Kouri. J. Phys. Chem., 96:6539, 1992.

    CAS  Google Scholar 

  58. E. R. Davidson. J. Corn-put. Phys., 17:87, 1975.

    Google Scholar 

  59. C. Lanczos. J. Res. NDS, 45:255, 1950.

    Google Scholar 

  60. H. Karlsson and S. Holmgren. J. Chem. Phys., 117:9116–123, 2002.

    Article  CAS  Google Scholar 

  61. Hua-Gon Yn and Gurmar Nyman. Chem. Phys. Lett., 298:27–35, 1998.

    Google Scholar 

  62. H. D. Simon. Math. Compute 42:115, 1984.

    Google Scholar 

  63. H. Tal-Ezer and R. Kosloff. J. Chem. Phys., 81:3967, 1984.

    Article  CAS  Google Scholar 

  64. R. Kosloff and H. Tal-Ezer. Chem. Phys. Lett., 127:223, 1986.

    Article  CAS  Google Scholar 

  65. Hua-Gon Yu. Chem. Phys. Lett., 365:189–196, 2002.

    CAS  Google Scholar 

  66. Hua-Gen Yu. J. Chem. Phys., 117:8190–8196, 2002.

    CAS  Google Scholar 

  67. W. H. Press, S. A. Teukolsky. W. T. Vetterling. and B. P. Flannery. Numerical Recipes. Cambridge University Press, Cambridge. 1986.

    Google Scholar 

  68. W. H. Miller. J. Chem. Phys., 61:1823, 1974.

    CAS  Google Scholar 

  69. W. H. Miller, S. D. Schwartz, and J. W. Tromp. J. Chem. Phys., 79:4889, 1983.

    CAS  Google Scholar 

  70. F. Matzkies and U. Manthe. J. Chem. Phys., 108:4828, 1998.

    Article  CAS  Google Scholar 

  71. Fermin Huarte-Larranaga and Uwe Manthe. J. Chem. Phys., 113:5115, 2000.

    CAS  Google Scholar 

  72. Fermin Huarte-Larranaga and Uwe Manthe. J. Phys. Chem., 105:2522, 2001.

    CAS  Google Scholar 

  73. J. M. Bowman. D. Wang, X. Huang. F. Huarte Larranaga, and U. Manthe. J. Chem. Phys., 114:9683, 2001.

    CAS  Google Scholar 

  74. U. Manthe. private communication.

    Google Scholar 

  75. T. Takayanagi. J. Chem. Phys., 104:2237, 1996.

    Article  CAS  Google Scholar 

  76. M.L. Wang, Y. Li, J.Z.H Zhang, and D.H. Zhang. J. Chem. Phys., 113:1802, 2000.

    CAS  Google Scholar 

  77. D. Wang and J. Bowman. Chem. Phys., 115:2055, 2001.

    CAS  Google Scholar 

  78. Hua-Gen Yu. Chem. Phys. Lett, 332:538–544, 2000.

    Article  CAS  Google Scholar 

  79. H. Szichman and R. Baer. J. Chem. Phys., 117:7614, 2002.

    Article  CAS  Google Scholar 

  80. D. C. Clary. Phys. Chem. Chem. Phys., 1:1173. 1999.

    Article  CAS  Google Scholar 

  81. J. Palma and D.C. Clary. J. Chem. Phys., 112:1859, 1999.

    Google Scholar 

  82. J. Palma and D.C. Clary. Phys. Chem. Chem. Phys., 2:4105, 2000.

    Article  CAS  Google Scholar 

  83. J. Palma and D.C. Clary. J. Chem. Phys., 115:2188, 2001.

    Article  CAS  Google Scholar 

  84. W. T. Duncan and T. N. Truong. J. Chem. Phys., 103:9642, 1995.

    Google Scholar 

  85. W. R. Simpson, T. P. Rakitzis, S. A. Kandel, T. Lev-On, and R. N. Zare. J. Phys. Chem., 100:7938, 1996.

    Article  CAS  Google Scholar 

  86. Hua-Gen Yu and Gunnar Nyman. J. Phys. Chem. A, 105:2240–2245, 2001.

    CAS  Google Scholar 

  87. S. A. Kandel and R. N. Zare. J. Chem. Phys., 109:9719–9727, 1998.

    Article  CAS  Google Scholar 

  88. R. Zare. private communication.

    Google Scholar 

  89. W. R. Simpson, T. P. Rakitzis, S. A. Kandel, A. J. Orr-Ewing, and R. N. Zare. J. Chem. Phys., 103:7313, 1995.

    CAS  Google Scholar 

  90. Y.-P. Liu, G. C. Lynch, T. N. Truong, D. h. Lu, D. G. Trahlar, and B. C. Garrett. J. Am. Chem. Soc., 115:2408, 1993.

    CAS  Google Scholar 

  91. D.C. Chatficld. R. S. Friedman, D. W. Schwcnkc, and D. G. Truhlar. J. Phys. Chem., 96:2414, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Nyman, G. (2004). The Rotating Bond Umbrella Model Applied to Atom-Methane Reactions. In: Lagana, A., Lendvay, G. (eds) Theory of Chemical Reaction Dynamics. NATO Science Series II: Mathematics, Physics and Chemistry, vol 145. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2165-8_12

Download citation

Publish with us

Policies and ethics