Skip to main content

Molecular Dynamics: Energy Selected Bases

  • Conference paper
Theory of Chemical Reaction Dynamics

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 145))

  • 1238 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. R. Bunker and P. Jensen (1998) Molecular Symmetry and Speetroscopy, NRC, Ottawa.

    Google Scholar 

  2. J. Cullum and R. A. Willoughby (1985) Lanezos algorithm for large symmetric eigenvalue computation, Birkhauscr, Boston

    Google Scholar 

  3. D. C. Sorensen (1992) Implicit application of polynomial filters in a k-step Arnoldi method, SIAM J. Matrix Anal. Appl. 13, pp. 357.

    Article  Google Scholar 

  4. V. A. Mandelshtam, T. P. Grozdanov and H. S. Taylor (1995) Bound states and resonances of the hydroperoxyl radical HO2: An accurate quantum mechanical calculation using filter diagonalization, J. Chem. Phys 103, pp. 10074.

    CAS  Google Scholar 

  5. D. Neuhauser (1990) Bound state eigenfunctions from wave packets: Time → energy resolution, J. Chem. Phys. 93, pp. 2611.

    CAS  Google Scholar 

  6. D. Wang and J. M. Bowman (1994) L2 calculations of resonances and final rotational distributions for HCO → H + CO, J. Chem. Phys. 100, pp. 1021.

    CAS  Google Scholar 

  7. J.M. Hutson (1990) Intermolecular Forces and the Spectroscopy of van der Waals molecules, Annu. Rev. Phys. Chem. 41, pp. 123.

    Article  CAS  Google Scholar 

  8. R. Schinke (1993) Photodissociation Dynamics, Cambridge University Press.

    Google Scholar 

  9. Z. Bacic and J. C. Light (1989) Theoretical Methods for Rovibrational States of Floppy Molecules, Ann. Rev. Phys. Chem. 40, pp. 469.

    Article  CAS  Google Scholar 

  10. H. Y. Mussa and J. Tennyson (1998) Calculation of the rotation-vibration states of water up to dissociation. J. Chem. Phys. 109, pp. 10885.

    Article  CAS  Google Scholar 

  11. J. V. Lill and G. A. Parker and J. C. Light (1986) The Discrete Variable-Finite Basis Approach to Quantum Scattering, J. Chem. Phys. 85, pp. 900.

    Article  CAS  Google Scholar 

  12. J. C. Light and T. Carrington, Jr. (2000) Discrete variable representations and their utilization, Adv. Chem. Phys. 114, pp. 263.

    Google Scholar 

  13. Seung E. Choi and John C. Light (1992) Highly Excited Vibrational Eigenstates of Nonlinear Triatomic Molecules: Applications to H2O J. Chem. Phys. 97, pp. 7031.

    CAS  Google Scholar 

  14. R. B. Lchoucq and D. C. Sorensen and C. Yang (1996) ARPACK USERS GUIDE: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods, Center for Research on Parallel Computation, Rice University, CRPC-TR96665, Houston, TX.

    Google Scholar 

  15. Bill Poiricr and Tucker Carrington Jr. (2001) Accelerating the calculation of energy levels and wavefunctions using an efficient preconditioner with the inexact spectral transform method, J. Chem. Phys. 114, pp. 9254.

    Google Scholar 

  16. H. S. Lee and J. C. Light (2003) Molecular vibrations: Iterative solution with energy selected bases, J. Chem. Phys. 118, pp. 3458.

    CAS  Google Scholar 

  17. D. C. Sorensen (1992) Implicit application of polynomial filters in a k-step Arnoldi method, SIAM J. Matrix Anal. Appl. 13, pp. 357.

    Article  Google Scholar 

  18. X. G. Wang and T. Carrington, Jr. (2002) New ideas for using contracted basis functions with a Lanezos eigensolver for computing vibra-tional spectra of molecules with four or more atoms, J. Chem. Phys. 117, pp. 6923.

    CAS  Google Scholar 

  19. J. Echave and D. C. Clary (1992) Potential optimized discrete variable representation, Chem. Phys. Lett 190, pp. 225.

    Article  CAS  Google Scholar 

  20. H. Wei and T. Carrington Jr. (1992) The discrete variable representation of a Triatomic Hamiltonian, J. Chem. Phys. 97, pp. 3029.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Light, J.C., Lee, HS. (2004). Molecular Dynamics: Energy Selected Bases. In: Lagana, A., Lendvay, G. (eds) Theory of Chemical Reaction Dynamics. NATO Science Series II: Mathematics, Physics and Chemistry, vol 145. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2165-8_10

Download citation

Publish with us

Policies and ethics