Skip to main content

Asymptotic Interactions Between Open Shell Partners in Low Temperature Complex Formation: The H(X2S1/2) + O2 (X3 g ) and \( O({}^3P_{j_O } ) + OH(X^2 \Pi _{\tilde \Omega } )\) Systems

  • Conference paper
Theory of Chemical Reaction Dynamics

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 145))

Abstract

The asymptotic interactions at large intermolecular distances are determined for two open-shell systems, H(X2S1/2) + O2 (X3∑{skg/−}) and \( O({}^3P_{j_O } ) + OH(X^2 \Pi _{\tilde \Omega } )\) for fixed values of intramolecular distances r. The electronic diabatic Hamiltonians are set up for two purposes: i) the direct diagonalization of the electronic Hamiltonian yielding two-dimensional potential energy surfaces (PES) which depend on the intermolecular distance R and the angle γ. between R and r, and ii) the incorporation of the diabatic electronic basis into the diabatic roronic basis which can be used in the construction of the roronic Hamiltonian in the total angular momentum representation. The former procedure allows one to compare the asymptotic PES with their ab initio counterparts, while the latter provides the input data for the calculation of low temperature capture rate constants within the statistical adiabatic channel model (SACM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Maergoiz, A.I., Nikitin E.E., Troe, J., Ushakov V.G. Classical trajectory and statistical adiabatic channel study of the dynamics of capture and unimolecular bond fission (1996) a) I. Ion-dipole capture, J. Chem. Phys. 105, 6263–6269; b) II. Ion-quadrupole capture, ibid. 6270–6276; c) III. Dipole-dipole capture, ibid. 6277–6284; (1998) d) IV. Valence interactions between atoms and linear rotors, J. Chem. Phys. 108, 5265–5280; e) V. Valence interactions between two linear rotors, ibid. 9987–9998; (2002) g) VI. Properties of transitional modes and specific rate constants k(E,J), J. Chem. Phys. 117, 4201–4213.

    Google Scholar 

  2. a) Marques, J.M.C. and Varandas, A.J.C. (2001) On the high pressure rate constants for the H/Mu+O2 addition reaction, Phys. Chem. Chem. Phys. 3, 505–507; b) Harding, L.B., Troe, J., and Ushakov, V.G. (2001) Comment, Phys. Chem. Chem. Phys. 3, 2630–2631; c) Marques, J.M.C. and Varandas, A.J.C. (2001) Reply to the comment, Phys. Chem. Chem. Phys. 3, 2632–2633.

    CAS  Google Scholar 

  3. a) Viti, S., Roueff, E., Hartquist, T.W., Pineau des Forets, G., Williams, D.A. (2001) Interstellar oxygen chemistry, Astronomy and Astrophysics, 370, 557–569; b) Koehler, S.P.K., (2002) Low-temperature reaction kinetics and dynamics of the hydroxyl radical, Diploma Thesis, Institut fuer Physikalische Chemie, Universitaet Goettingen.

    CAS  Google Scholar 

  4. Bussery, B., Umanskii, S.Ya., Aubert-Frecon, M., and Bouty, O. (1994) Exchange interaction between two O2 molecules using the asymptotic method, J. Chem. Phys. 101, 416–423.

    Article  CAS  Google Scholar 

  5. Cade, P.E. and Wahl, A.C. (1974) Atomic Data & Nuclear Data Tables 13, 339.

    CAS  Google Scholar 

  6. Spelsberg, D., Lorenz, T., and Meyer, W. (1993) Dynamic multipole polarizabilities and long range interaction coefficients, J. Chem. Phys. 99,7845–7858.

    CAS  Google Scholar 

  7. Spelsberg, D. and Meyer, W. (1998) Ab initio dynamic dipole polarizabilities for O2, J. Chem. Phys. 109, 9802–9810.

    Article  CAS  Google Scholar 

  8. Harding, L.B., Troe, J., and Ushakov, V.G. (2000) Classical trajectory calculations of the high pressure limiting rate constants, Phys. Chem. Chem. Phys. 2, 631–642.

    Article  CAS  Google Scholar 

  9. Harding, L.B., private communication.

    Google Scholar 

  10. Dashevskaya, E.I., Maergoiz, A.I., Troe, J., Litvin, I., Nikitin, E.E. (2003) Low-temperature behavior of capture rate constants, J. Chem. Phys. 118, 7313–7320.

    CAS  Google Scholar 

  11. Maergoiz, A.I., Nikitin, E.E., Troe, J. (1996) Adiabatic channel study of the capture of nitrogen and oxygen molecules by an ion, Z. Phys. D36, 339–347.

    Google Scholar 

  12. Zare, R.N. (1986) Angular Momentum, Wiley, N.Y.

    Google Scholar 

  13. Varshalovich, D.A., Moskalev, A.N., and Khersonskii, V.K. (1988) Quantum Theory of Angular Momentum, World Scientific, Singapore.

    Google Scholar 

  14. Radzig, A.A. and Smirnov, B.M. (1985) Reference data on atoms, molecules and ions, Springer, Berlin.

    Google Scholar 

  15. Cade, P.E. and Huo, W.M. (1967) Electronic structure of first-row hydrides, J. Chem. Phys., 47, 614–648.

    CAS  Google Scholar 

  16. Nikitin, E.E., Ottinger, Ch., and Shalashilin, D.V. (1996) Test of the asymptotic method as applied to atom-diatom interaction potentials, Z. Phys. D36, 257–264.

    Google Scholar 

  17. Graff, M.M. and Wagner, A.F. (1990) Theoretical studies of fine-structure effects and long-range forces. J. Chem. Phys. 92, 2423–2439.

    Article  CAS  Google Scholar 

  18. Gentry, W.R. and Giese, C.F. (1977) Long-range interactions of ions with atoms having partially filled p subshells. J. Chem. Phys. 67, 2355–2361.

    CAS  Google Scholar 

  19. Buckingham, A.D. (1967) Permanent and induced molecular moments and long-range intermolecular forces, Adv. Chem. Phys. 12,107–142.

    Google Scholar 

  20. Spelsberg, D. (1999) Dynamic multipole polarizabilities and reduced spectra for OH, J. Chem. Phys., 111, 9625–9633.

    CAS  Google Scholar 

  21. Esposti, A.D. and Werner, H.-J. (1990) OH(X2π, A2σ+)+Ar energy surfaces, J. Chem. Phys. 93, 3351–3366.

    Article  Google Scholar 

  22. Chu, S.I., Yoshimine, M., and Liu, B. (1974) J. Chem. Phys., 61, 5389–5395.

    CAS  Google Scholar 

  23. Clary, D.C. and Werner, H.-J. (1984) Quantum calculations on the rate constant for the O+OH reaction, Chem. Phys. Letters, 112, 346–350.

    CAS  Google Scholar 

  24. Hirschfelder, J.O., Curtiss, C.F., and Bird, R.B. (1964) Molecular Theory of the Gases and Liquids, Wiley, New York.

    Google Scholar 

  25. Harding, L.B., Maergoiz, A.I., Troe, J., and Ushakov, V.G. (2000) Statistical rate theory for the HO+O↔HO2↔H+O2 reaction system, J. Chem. Phys., 113, 11019–11034.

    Article  CAS  Google Scholar 

  26. Pastrana, M.R., Quintales, L.A.M., Brandao, J., and Varandas, A.J.C. (1990) Recalibration of a single-valued double many-body expansion potential energy surface for ground-state HO2, J. Phys. Chem. 94, 8073–8080.

    Article  CAS  Google Scholar 

  27. Walch, S.P., Rohlfing, C.M., Melius, C.F., and Bauschlicher, Jr., C.W. (1988) Theoretical characterization of the minimum energy path for the reaction H+O2→HO2*→HO+O, J. Chem. Phys. 88, 6273–6281.

    CAS  Google Scholar 

  28. Umanskii, S.Ya. and Nikitin, E.E. (1969) Elektronenwellenfunktionen und Terme zweiatomiger Molekuele, Theoret. chim. Acta (Berl.), 13, 91–105.

    CAS  Google Scholar 

  29. Nikitin, E.E. and Umanskii, S.Ya. (1984) Theory of Slow Atomic Collisions, Springer, Berlin-Heidelberg.

    Google Scholar 

  30. Karna, S.P. (1996) Spin-unrestricted time-dependent Hartree-Fock theory, J. Chem. Phys., 104, 6590–6605.

    Article  CAS  Google Scholar 

  31. Landau, L.D. and Lifshitz, E.M. (1977) Quantum Mechanics, Pergamon, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Maergoiz, A.I., Nikitin, E.E., Troe, J., Ushakov, V.G. (2004). Asymptotic Interactions Between Open Shell Partners in Low Temperature Complex Formation: The H(X2S1/2) + O2 (X3 g ) and \( O({}^3P_{j_O } ) + OH(X^2 \Pi _{\tilde \Omega } )\) Systems. In: Lagana, A., Lendvay, G. (eds) Theory of Chemical Reaction Dynamics. NATO Science Series II: Mathematics, Physics and Chemistry, vol 145. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2165-8_1

Download citation

Publish with us

Policies and ethics