Skip to main content

Explicit Cross-Sections of Singly Generated Group Actions

  • Chapter
Harmonic Analysis and Applications

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

We consider two classes of actions on ℝn—one continuous and one discrete. For matrices of the form A = e B with BM n(ℝ), we consider the action given by γ → γA t. We characterize the matrices A for which there is a cross-section for this action. The discrete action we consider is given by γ → γA k, where AGL n(ℝ). We characterize the matrices A for which there exists a cross-section for this action as well. We also characterize those A for which there exist special types of cross-sections; namely, bounded cross-sections and finite-measure cross-sections. Explicit examples of cross-sections are provided for each of the cases in which cross-sections exist. Finally, these explicit cross-sections are used to characterize those matrices for which there exist minimally supported frequency (MSF) wavelets with infinitely many wavelet functions. Along the way, we generalize a well-known aspect of the theory of shift-invariant spaces to shift-invariant spaces with infinitely many generators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Baggett, H. Medina, and K. Merrill, Generalized multiresolution analyses, and a construction procedure for all wavelet sets in R n, J. Fourier Anal. Appl., 6 (1999), pp. 563–573.

    Article  MathSciNet  Google Scholar 

  2. J. J. Benedetto and M. Leon, The construction of single wavelets in Ddimensions, J. Geom. Anal., 11 (2001), pp. 1–15.

    Article  MATH  MathSciNet  Google Scholar 

  3. J. J. Benedetto and M. T. Leon, The construction of multiple dyadic minimally supported frequency wavelets on R d, in: The Functional and Harmonic Analysis of Wavelets and Frames (San Antonio, TX, 1999), Contemp. Math., Vol. 247, Amer. Math. Soc., Providence, RI, 1999, pp. 43–74.

    Google Scholar 

  4. J. Benedetto and S. Li, The theory of multiresolution analysis frames and applications to filter banks, Appl. Comput. Harmon. Anal., 5 (1998), pp. 389–427.

    Article  MATH  MathSciNet  Google Scholar 

  5. J. Benedetto and S. Sumetkijakan, A fractal set constructed from a class of wavelet sets, in: Inverse Problems, Image Analysis, and Medical Imaging (New Orleans, LA, 2001), Contemp. Math., Vol. 313, Amer. Math. Soc., Providence, RI, 2002, pp. 19–35.

    Google Scholar 

  6. M. Bownik, Combined MSF multiwavelets, J. Fourier Anal. Appl. 8 (2002), no. 2, pp. 201–210.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Bownik, The structure of shift-invariant subspaces of L 2(ℝn), J. Funct. Anal., 177 (2000), pp. 282–309.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Bownik and D. Speegle, The dimension function for real dilations and dilations admitting non-MSF wavelets, in: Approximation Theory X (St. Louis, MO 2001), Vanderbilt Univ. Press, Nashville, TN, 2002, pp. 63–85.

    Google Scholar 

  9. W. Czaja, G. Kutyniok, and D. Speegle, The geometry of sets of parameters of wave packet frames, Appl. Comput. Harmon. Anal., 20 (2006), pp. 108–125.

    Article  MATH  MathSciNet  Google Scholar 

  10. X. Dai, D. R. Larson, and D. M. Speegle, Wavelet sets in R n, J. Fourier Anal. Appl., 3 (1997), pp. 451–456.

    MATH  MathSciNet  Google Scholar 

  11. C. de Boor, R. DeVore, and A. Ron, The structure of finitely generated shift-invariant spaces in L 2(R d), J. Funct. Anal., 119 (1994), pp. 37–78.

    Article  MATH  MathSciNet  Google Scholar 

  12. H. Helson, Lectures on Invariant Subspaces, Academic Press, New York-London, 1964.

    MATH  Google Scholar 

  13. E. Hernández, D. Labate, and G. Weiss, A unified characterization of reproducing systems generated by a finite family, II, J. Geom. Anal, 12 (2002), pp. 615–662.

    MATH  MathSciNet  Google Scholar 

  14. E. Hernández, X. Wang, and G. Weiss, Smoothing minimally supported frequency wavelets, I, J. Fourier Anal. Appl., 2 (1996), pp. 329–340.

    MATH  MathSciNet  Google Scholar 

  15. E. Hernández, X. Wang, and G. Weiss, Smoothing minimally supported frequency wavelets, II, J. Fourier Anal. Appl., 3 (1997), pp. 23–41.

    Article  MATH  MathSciNet  Google Scholar 

  16. E. Ionascu, D. Larson, and C. Pearcy, On the unitary systems affiliated with orthonormal wavelet theory in n-dimensions, J. Funct. Anal., 157 (1998), pp. 413–431.

    Article  MATH  MathSciNet  Google Scholar 

  17. R. Laugesen, N. Weaver, G. Weiss, and N. Wilson, A characterization of the higher dimensional groups associated with continuous wavelets, J. Geom. Anal., 12 (2002), pp. 89–102.

    MATH  MathSciNet  Google Scholar 

  18. C. Lekkerkerker, Geometry of Numbers, Bibliotecha Mathematica, Vol. VIII, Wolters-Noordhoff Publishing, Groningen; North-Holland Publishing Co., Amsterdam-London, 1969.

    MATH  Google Scholar 

  19. G. Olafsson and D. Speegle, Wavelets, wavelet sets and linear actions on ℝn, in: Wavelets, Frames and Operator Theory (College Park, MD, 2003), Contemp. Math., Vol. 345, Amer. Math. Soc., Providence, RI, pp. 253–282.

    Google Scholar 

  20. D. Speegle, On the existence of wavelets for non-expansive dilation matrices, Collect. Math., 54 (2003), pp. 163–179.

    MATH  MathSciNet  Google Scholar 

  21. Y. Wang, Wavelets, tiling, and spectral sets, Duke Math. J. 114 (2002), pp. 43–57.

    Article  MATH  MathSciNet  Google Scholar 

  22. G. Weiss and E. Wilson, The mathematical theory of wavelets, in: Twentieth Century Harmonic Analysis—A Celebration (Il Ciocco, 2000), NATO Sci. Ser. II Math. Phys. Chem., Vol. 33, Kluwer Acad. Publ., Dordrecht, 2001, pp. 329–366.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to John Benedetto.

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Boston

About this chapter

Cite this chapter

Larson, D., Schulz, E., Speegle, D., Taylor, K.F. (2006). Explicit Cross-Sections of Singly Generated Group Actions. In: Heil, C. (eds) Harmonic Analysis and Applications. Applied and Numerical Harmonic Analysis. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4504-7_10

Download citation

Publish with us

Policies and ethics