Skip to main content

Opérateurs différentiels invariants et problème de Noether

  • Chapter
Studies in Lie Theory

Part of the book series: Progress in Mathematics ((PM,volume 243))

Summary

Let G be a group and ≤ : G → GL(V) a representation of G in a vector space V of dimension n over a commutative field k of characteristic zero. The group (G) acts by automorphisms on the algebra of regular functions k[V], and this action can be canonically extended to theWeyl algebra A n (k) of differential operators over k[V] and then to the skewfield of fractions D n(k) of A n(k). The problem studied in this paper is to determine sufficient conditions for the subfield of invariants of D n(k) under this action to be isomorphic to a Weyl skewfield D m(K) for some integer 0 ≤ m ≤ n and some purely transcendental extension K of k. We obtain such an isomorphism in two cases: (1) when ≤ splits into a sum of representations of dimension one, (2) when ≤ is of dimension two. We give some applications of these general results to the actions of tori on Weyl algebras and to differential operators over Kleinian surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. J. Alev and F. Dumas, Invariants du corps de Weyl sous l’action de groupes finis, Commun. Algebra 25 (1997), 1655–1672.

    Article  MATH  MathSciNet  Google Scholar 

  2. —, Sur les invariants des algèbres de Weyl et de leurs corps de fractions, Lectures Notes Pure and Applied Math. 197 (1998), 1–10.

    MathSciNet  Google Scholar 

  3. J. Alev and Th. Lambre, Comparaison de l’homologie de Hochschild et de l’homologie de Poisson pour une déformation des surfaces de Klein, in Algebra and Operator Theory (Tashkent, 1997), Kluwer Acad. Publ., Dordrecht, 1998, 25–38.

    Google Scholar 

  4. L. Chiang, H. Chu and M. Kang, Generation of invariants, J. Algebra 221 (1999), 232–241.

    Article  MATH  MathSciNet  Google Scholar 

  5. I. V. Dolgachev, Rationality of fields of invariants, Proc. Symposia Pure Math. 46 (1987), 3–16.

    MathSciNet  Google Scholar 

  6. K. R. Goodearl and R. B. Warfield, An Introduction to non commutative Noetherian Rings, Cambridge University Press, London, 1985.

    Google Scholar 

  7. I.M. Gelfand and A. A. Kirillov, Sur les corps liés aux algèbres enveloppantes des algèbres de Lie, Inst. Hautes Etudes Sci. Publ. Math. 31 (1966), 509–523.

    Article  MathSciNet  Google Scholar 

  8. A. Joseph, A generalization of the Gelfand-Kirillov conjecture, Amer. J. Math. 99 (1977), 1151–1165.

    Article  MATH  MathSciNet  Google Scholar 

  9. —, Coxeter structure and finite group action, in Algèbre non commutative, groupes quantiques et invariants (Reims, 1995), 185–219, Sémin. Congr. 2, Soc. Math. France, Paris, 1997.

    Google Scholar 

  10. P. I. Katsylo, Rationality of fields of invariants of reducible representations of the group SL2, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 39 (1984), 77–79.

    MathSciNet  Google Scholar 

  11. M. Kervaire et T. Vust, Fractions rationnelles invariantes par un groupe fini, in Algebraische Transformationsgruppen und Invariantentheorie, D.M.V. Sem. 13 Birkhäuser, Basel, (1989), 157–179.

    Google Scholar 

  12. G.R. Krause and T.H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension. Revised version. Graduate Studies in Mathematics, 22 American Mathematical Society, 2000.

    Google Scholar 

  13. Th. Levasseur, Anneaux d’opérateurs différentiels, in Séminaire d’Algèbre P. Dubreil — M.-P. Malliavin (1980), Lecture Notes in Math. 867, Springer, Berlin-New York, 1981, 157–173.

    Chapter  Google Scholar 

  14. T. Maeda, On the invariant field of binary octavics, Hiroshima Math. J. 20 (1990), 619–632.

    MATH  MathSciNet  Google Scholar 

  15. J. C. McConnell and J. C. Robson, Non commutative Noetherian Rings, Wiley, Chichester, 1987.

    Google Scholar 

  16. T. Miyata, Invariants of certain groups I, Nagoya Math. J. 41 (1971), 68–73.

    MathSciNet  Google Scholar 

  17. S. Montgomery, Fixed Rings of Finite Automorphism Groups of Associative Rings, Lecture Notes in Math. 818, Springer-Verlag, Berlin, 1980.

    Google Scholar 

  18. I. M. Musson, Actions of tori on Weyl algebras, Commun. Algebra 16 (1988), 139–148.

    Article  MATH  MathSciNet  Google Scholar 

  19. D. Saltman, Noether’s problem over an algebraically closed field, Invent. Math. 77 (1984), 71–84.

    Article  MATH  MathSciNet  Google Scholar 

  20. —, Groups acting on fields: Noether’s problem, in Group Actions on Rings (Brunswick, Maine, 1984), Contemp. Math., 43, Amer. Math. Soc., Providence, RI, 1985, 267–277.

    Google Scholar 

  21. T. A. Springer, Invariant Theory, Lectures Notes in Maths 585, Springer-Verlag, Berlin, 1977.

    Google Scholar 

  22. E. B. Vinberg, Rationality of the field of invariants of a triangular group, Vestnik Mosk. Univ. Mat. 37 (1982), 23–24.

    MathSciNet  Google Scholar 

  23. J. Zhang, On lower transcendence degree, Adv. Math. 139 (1998), 157–193.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dédié à Anthony Joseph, à l’occasion de son soixantième anniversaire

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Boston

About this chapter

Cite this chapter

Alev, J., Dumas, F. (2006). Opérateurs différentiels invariants et problème de Noether. In: Bernstein, J., Hinich, V., Melnikov, A. (eds) Studies in Lie Theory. Progress in Mathematics, vol 243. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4478-4_3

Download citation

Publish with us

Policies and ethics