Skip to main content

Motion Control and Coordination in Mechanical and Robotic Systems

  • Chapter
Current Trends in Nonlinear Systems and Control

Part of the book series: Systems and Control: Foundations & Applications ((SCFA))

  • 2655 Accesses

Summary

The chapter focuses on concepts and methodologies of coordinating and motion control aimed at maintaining complex spatial behaviour of nonlinear dynamical systems. The main approach is discussed in connection with problems of control of mechanical systems (rigid bodies, robotic manipulators, and mobile robots) and is naturally extended to coordinating the motions of redundant robots, underactuated mechanisms, and walking machines.

This chapter outlines the results of recent research supported by the Russian Foundation for Basic Research and Program 17 of Presidium of RAS (project 1.4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blekhman II, Fradkov AL, Nijmeijer H, Pogromsky AY (1997) On self-synchronization and controlled synchronization. Systems & Control Letters 31: 299–305

    Article  MATH  MathSciNet  Google Scholar 

  2. Bloch AM, Krishnaprasad PS, Marsden JE, Sanchez De Alvarez G (1992) Stabilization of rigid body dynamics by internal and external torques. Automatica 28:745–756

    Article  MATH  MathSciNet  Google Scholar 

  3. Burdakov SF, Miroshnik IV, Stelmakov RE (2001) Motion control of wheeled robot. Nauka, Saint Petersburg (in Russian)

    Google Scholar 

  4. Caccavale F, Siciliano B (2001). Kinematic control of redundant free-robotic systems. Advanced Robotics 15:429–448

    Article  Google Scholar 

  5. Canudas de Wit C, Espiau B, Urrea C (2002). Orbital stabilization of underactuated mechanical systems. 15th triennial World Congress of IFAC, Barcelona, Spain

    Google Scholar 

  6. Chevallereau C, Abba G, Aoustin Y, Plestan F, Westervelt ER, Canudas de Wit C, Grizzle JW (2003) RABBIT: A testbed for advanced control theory. IEEE Control Systems Magazine 23(5):57–79

    Article  Google Scholar 

  7. Chirikjian GS (1995) Hyperredundant manipulator dynamics: a continuum approximation. Advanced Robotics 9:217–243

    Article  Google Scholar 

  8. De Luca A, Lantini S et al. (2001). Control problems in underactuated manipulators. Proc. of Int. Conf. on Advanced Intel. Mechatronics, Como, Italy

    Google Scholar 

  9. Elkin VI (1998) Reduction of nonlinear controlled systems. A deferentially geometric approach. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  10. Fradkov AL, Miroshnik IV, Nikiforov VO (1999) Nonlinear and adaptive control of complex systems. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  11. Furuta K (2002) Super mechano-systems: fusion on control and mechanisms. 15th triennial World Congress of IFAC, Barcelona, Plenary Papers, survey papers and milestones: 35–44

    Google Scholar 

  12. Isidori A (1995) Nonlinear control systems, 3rd edition. Springer-Verlag, New York

    MATH  Google Scholar 

  13. Kolesnikov AA (2000) Scientific fundamentals of synergetic control, Ispo-Service, Moscow (in Russian)

    Google Scholar 

  14. Miroshnik IV, Usakov AV (1977) The synthesis of an algorithm for synchronous control of quasi-similar systems. Autom. and Rem. Control 11: 22–29

    MATH  MathSciNet  Google Scholar 

  15. Miroshnik IV (1986) On stabilization of the motion about a manifold, Avtomatyca, no. 4 (in Russian). English translation: Soviet J. of Autom. and Inf. Science, Scripta Technica Publ. Company, Washington, DC

    Google Scholar 

  16. Miroshnik IV (1990) Coordinating control of multivariable systems. Leningrad, Energoatomizdat (in Russian)

    Google Scholar 

  17. Miroshnik IV, Nikiforov VO (1995a) Redundant manipulator motion control in the task oriented space. IFAC Workshop on Motion Control, Munich, 648–655

    Google Scholar 

  18. Miroshnik IV, Nikiforov VO (1995b) Coordinating control of robotic manipulator. Int. J. Robotics and Automation 10(3):101–105

    Google Scholar 

  19. Miroshnik IV, Bobtzov A (2000) Stabilization of motions of multipendulum systems. In: 2nd Int. Conf. on Control of Oscillation and Chaos. St. Petersburg 1:22–25

    Google Scholar 

  20. Miroshnik IV, Nikiforov VO, Fradkov AL (2000) Nonlinear control of dynamical systems. Nauka, Saint Petersburg (in Russian)

    MATH  Google Scholar 

  21. Miroshnik IV, Nikiforov VO, Shiegin VV (2001). Motion control for kinematically redundant manipulator robots. J. Computer and System Sciences Int. (Izvestia Rossiiskoi Akademii Nauk. Teoriya i Systemy Upravleniya), 1(40)

    Google Scholar 

  22. Miroshnik IV, Sergeev KA (2001) Nonlinear control of robot spatial motion in dynamic environments. Proc. Int. IEEE Conf. on Advanced Intel. Mechatronics, Como, Italy 2:1303–1306

    Google Scholar 

  23. Miroshnik IV (2002a) Partial stabilization and geometric problem of nonlinear control. 15th Triennial World Congress of IFAC, Barcelona, Spain

    Google Scholar 

  24. Miroshnik IV (2002b) Attractors and geometric problems of nonlinear dynamics. In: Attractors, Signals, and Synergetics. Pabst Science Pub., Lengerich, 114–141

    Google Scholar 

  25. Miroshnik IV, Chepinsky SA (2003) Trajectory motion control of underactuated manipulators. IFAC Symposium on Robot Control, Wrozlaw

    Google Scholar 

  26. Miroshnik IV, Boltunov GI, Gorelov DP (2003) Control of configuration and trajectory motion of redundant robots. IFAC Symposium on Robot Control, Wrozlaw, 259–264

    Google Scholar 

  27. Miroshnik IV (2004) Attractors and partial stability of nonlinear dynamical systems. Automatica 40(3):473–480

    Article  MATH  MathSciNet  Google Scholar 

  28. Murray RM, Zexiang IL, Sastry SS (1993). A mathematical introduction to robotic manipulation. CRC Press, Boca Raton, FL

    MATH  Google Scholar 

  29. Pecora LM, Carroll TL (1999) Master stability functions for synchronized coupled systems. Int. J. of Bifurcation and Chaos 9(12): 2315–2320

    Article  Google Scholar 

  30. Seraji H (1989) Configuration control of redundant manipulators: theory and implementation. IEEE Trans. on Robotics and Automation 5:472–490

    Article  Google Scholar 

  31. Vorotnikov VI (1998) Partial stability and control. Birkhauser, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Boston

About this chapter

Cite this chapter

Miroshnik, I.V. (2006). Motion Control and Coordination in Mechanical and Robotic Systems. In: Menini, L., Zaccarian, L., Abdallah, C.T. (eds) Current Trends in Nonlinear Systems and Control. Systems and Control: Foundations & Applications. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4470-9_18

Download citation

Publish with us

Policies and ethics