Skip to main content

Thompson’s conjecture for real semisimple Lie groups

  • Chapter
The Breadth of Symplectic and Poisson Geometry

Part of the book series: Progress in Mathematics ((PM,volume 232))

Abstract

Aproof of Thompson’s conjecture for real semisimple Lie groups has been given by Kapovich, Millson, and Leeb. In this paper, we give another proof of the conjecture by using a theorem of Alekseev, Meinrenken, and Woodward from symplectic geometry.

The research of the first author was partially supported by NSF grant DMS-9970102. The research of the second author was partially supported by NSF grant DMS-0105195, by HHY Physical Sciences Fund, and by the New Staff Seeding Fund at HKU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, J., Barbasch, D., and Vogan, D., The Langlands Classification and Irreducible Characters for Real Reductive Groups, Birkhäuser, Boston, 1992.

    MATH  Google Scholar 

  2. Alekseev, A., On Poisson actions of compact Lie groups on symplectic manifolds, J. Differential Geom., 45 (1997), 241–256.

    MATH  MathSciNet  Google Scholar 

  3. Alekseev, A., Meinrenken, E., and Woodward, C., Linearization of Poisson actions and singular values of matrix products, Ann. Inst. Fourier Grenoble, 51-6 (2001), 1691–1717.

    MathSciNet  Google Scholar 

  4. Alekseev, A., and Meinrenken, E., Poisson geometry and the Kashiwara-Vergne conjecture, C. R. Math. Acad. Sci. Paris, 335 (2002), 723–728.

    MATH  MathSciNet  Google Scholar 

  5. Araki, S., On root systems and an infinitesimal classification of irreducible symmetric spaces, J. Math. Osaka City Univ., 13-1 (1962), 1–34.

    MathSciNet  Google Scholar 

  6. Berenstein, A., and Sjamaar, R., Coadjoint orbits, moment polytopes, and the Hilbert-Mumford criterion, J. Amer. Math. Soc., 13-2 (2000), 433–466.

    Article  MathSciNet  Google Scholar 

  7. Foth, P., A note on Lagrangian loci of quotients, Canad. Math. Bull., to appear; math.SG/0303322.

    Google Scholar 

  8. Fulton, W., Eigenvalues, invariant factors, highest weights, and Schubert calculus, Bull. Amer. Math. Soc. (N.S.), 37-3 (2000), 209–249.

    Article  MathSciNet  Google Scholar 

  9. Kapovich, M., Leeb, B., and Millson, J., Polygons in symmetric spaces and buildings, preprint, 2002.

    Google Scholar 

  10. Kapovich, M., Leeb, B., and Millson, J., The generalized triangle inequalities in symmetric spaces and buildings with applications to algebra, math.RT/0210256.

    Google Scholar 

  11. Kapovich, M., Leeb, B., and Millson, J., Convex functions on symmetric spaces and geometric invariant theory for weighted configurations on flag manifolds, math.DG/0311486.

    Google Scholar 

  12. Kapovich, M., Millson, J., and Treloar, T., The symplectic geometry of polygons in hyperbolic 3-space, Asian J. Math., 4-1 (2000) (Kodaira’s issue), 123–164.

    MathSciNet  Google Scholar 

  13. Klyachko, A., Random walks on symmetric spaces and inequalities for matrix spectra, Linear Algebra Appl., 319-1–3 (2000), 37–59.

    Article  MathSciNet  Google Scholar 

  14. Knapp, A., Representation Theory of Semi-Simple Groups, Princeton University Press, Princeton, NJ, 1986.

    Google Scholar 

  15. Kumar, S., Leeb, B., and Millson, J., The generalized triangular inequalities for rank 3 symmetric spaces of non-compact type, in Explorations in Complex and Riemannian Geometry: A Volume Dedicated to Robert Greene, Contemporary Mathematics, Vol. 332, American Mathematical Society, Providence, RI, 2003, 171–195.

    Google Scholar 

  16. Lu, J.-H., and Weinstein, A., Poisson Lie groups, dressing transformations, and Bruhat decompositions, J. Differential Geom., 31 (1990), 501–526.

    MATH  MathSciNet  Google Scholar 

  17. Lu, J.-H., Moment mappings and reductions of Poisson Lie groups, in Proc. Seminaire Sud-Rhodanien de Géométrie, Mathematical Sciences Research Institute Publications Series, Springer-Verlag, New York, 1991, 209–226.

    Google Scholar 

  18. Lu, J.-H., and Ratiu, T., On the non-linear convexity theorem of Kostant, J. Amer. Math. Soc., 4-2 (1991), 349–361.

    Article  MathSciNet  Google Scholar 

  19. O’Shea, L., and Sjamaar, R., Moment maps and Riemannian symmetric pairs, Math. Ann., 317-3 (2000), 415–457.

    Article  MathSciNet  Google Scholar 

  20. Schlichtkrull, H., Hyperfunctions and Harmonic Analysis on Symmetric Spaces, Birkhäuser, Basel, 1984.

    MATH  Google Scholar 

  21. Severa, P., and Weinstein, A., Poisson geometry with a 3-form background, in Proceedings of the International Workshop on Non-Commutative Geometry and String Theory, Keio University, Tokyo, 2001; also available at math.SG/0107133.

    Google Scholar 

  22. Thompson, R., Matrix Spectral Inequalities, John Hopkins University Press, Baltimore, 1988.

    Google Scholar 

  23. Wallach, N., Real Reductive Groups I, Academic Press, New York, 1988.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor Alan Weinstein for his 60th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Boston

About this chapter

Cite this chapter

Evens, S., Lu, JH. (2005). Thompson’s conjecture for real semisimple Lie groups. In: Marsden, J.E., Ratiu, T.S. (eds) The Breadth of Symplectic and Poisson Geometry. Progress in Mathematics, vol 232. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4419-9_5

Download citation

Publish with us

Policies and ethics