Skip to main content

Chloride Transporting CLC Proteins1

  • Chapter
Biological Membrane Ion Channels

Part of the book series: Biological And Medical Physics Biomedical Engineering ((BIOMEDICAL))

Abstract

In the early 1980s, Chris Miller and colleagues described a curious “double-barreled” chloride channel from the electric organ of Torpedo fish reconstituted in planar lipid bilayers (Miller and White, 1980). Single-channel openings occurred in “bursts” separated by long closures. A single burst was characterized by the presence of two open conductance levels of equal size and the gating (i.e., openings and closings) during a burst could be almost perfectly described as a superposition of two identical and independent conductances that switched between open and closed states with voltage-dependent rates α and β (Hanke and Miller, 1983) (Fig. 8.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Accardi, A., L. Ferrera, and M. Pusch. 2001. Drastic reduction of the slow gate of human muscle chloride channel (C1C-1) by mutation C277S. J. Physiol. 534:745–752.

    Google Scholar 

  • Accardi, A., L. Kolmakova-Partensky, C. Williams, and C. Miller. 2004. Ionic currents mediated by a prokaryotic homologue of CLC Cl channels. J. Gen. Physiol. 123:109–119. Epub 2004 Jan 12.

    Google Scholar 

  • Accardi, A., and C. Miller. 2004. Secondary active transport mediated by a prokaryotic homologue of C1C C1 channels. Nature 427:803–807.

    ADS  Google Scholar 

  • Accardi, A., and M. Pusch. 2000. Fast and slow gating relaxations in the muscle chloride channel CLC-1. J. Gen. Physiol. 116:433–444.

    Google Scholar 

  • Accardi, A., and M. Pusch. 2003. Conformational changes in the pore of CLC-0. J. Gen. Physiol. 122:277–293.

    Google Scholar 

  • Adachi, S., S. Uchida, H. Ito, M. Hata, M. Hiroe, F. Marumo, and S. Sasaki. 1994. Two isoforms of a chloride channel predominantly expressed in thick ascending limb of Henle’s loop and collecting ducts of rat kidney. J. Biol. Chem. 269:17677–17683.

    Google Scholar 

  • Adrian, R.H., and S.H. Bryant. 1974. On the repetitive discharge inmyotonic muscle fibres. J. Physiol. 240:505–515.

    Google Scholar 

  • Ahmed, N., M. Ramjeesingh, S. Wong, A. Varga, E. Garami, and C.E. Bear. 2000. Chloride channel activity of C1C-2 is modified by the actin cytoskeleton. Biochem. J. 352:789–794.

    Google Scholar 

  • Arreola, J., T. Begenisich, and J.E. Melvin. 2002. Conformation-dependent regulation of inward rectifier chloride channel gating by extracellular protons. J. Physiol. 541:103–112.

    Google Scholar 

  • Babini, E., and M. Pusch. 2004. A two-holed story: Structural secrets about CLC proteins become unraveled? Physiology 19:293–299. DOI:10.1152/physiol.00019.2004.

    Google Scholar 

  • Barbier-Brygoo, H., M. Vinauger, J. Colcombet, G. Ephritikhine, J. Frachisse, and C. Maurel. 2000. Anion channels in higher plants: Functional characterization, molecular structure and physiological role. Biochim. Biophys. Acta 1465:199–218.

    Google Scholar 

  • Bauer, C.K., K. Steinmeyer, J.R. Schwarz, and T.J. Jentsch. 1991. Completely functional double-barreled chloride channel expressed from a single Torpedo cDNA. Proc. Natl. Acad. Sei. USA 88:11052–11056.

    ADS  Google Scholar 

  • Bennetts, B., G.Y. Rychkov, H.-L. Ng, C.J. Morton, D. Stapleton, M.W. Parker, and B.A. Cromer. 2005. Cytoplasmic ATP-sensing domains regulate gating of skeletal muscle C1C-1 chloride channels. J. Biol. Chem. 280:32452–32458.

    Google Scholar 

  • Birkenhäger, R., E. Otto, M.J. Schurmann, M. Vollmer, E.M. Ruf, I. Maier-Lutz, F. Beekmann, A. Fekete, H. Omran, D. Feldmann, D.V Milford, N. Jeck, M. Konrad, D. Landau, N. V. Knoers, C. Antignac, R. Sudbrak, A. Kispert, and F. Hildebrandt. 2001. Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nat. Genet. 29:310–314.

    Google Scholar 

  • Blaisdell, C.J., R.D. Edmonds, X.T. Wang, S. Guggino, and P.L. Zeitlin. 2000. pH-regulated chloride secretion in fetal lung epithelia. Am. J. Physiol. Lung Cell. Mol. Physiol. 278:L1248–L1255.

    Google Scholar 

  • Bösl, M.R., V Stein, C. Hübner, A.A. Zdebik, S.E. Jordt, A.K. Mukhopadhyay, M.S. Davidoff, A.F. Holstein, and T.J. Jentsch. 2001. Male germ cells and photoreceptors, both dependent on close cell–cell interactions, degenerate upon C1C-2 Cl(−) channel disruption. EMBO J. 20:1289–1299.

    Google Scholar 

  • Bostick, D.L., and M.L. Berkowitz. 2004. Exterior site occupancy infers chlorideinduced proton gating in a prokaryotic homolog of the C1C chloride channel. Biophys. J. 87:1686–1696.

    ADS  Google Scholar 

  • Brandt, S., and T.J. Jentsch. 1995. C1C-6 and C1C-7 are two novel broadly expressed members of the CLC chloride channel family. FEBS Lett. 377:15–20.

    Google Scholar 

  • Bretag, A.H. 1987. Muscle chloride channels. Physiol. Rev. 67:618–724.

    Google Scholar 

  • Bryant, S.H., and A. Morales-Aguilera. 1971. Chloride conductance in normal and myotonic muscle fibres and the action of monocarboxylic aromatic acids. J. Physiol. 219:367–383.

    Google Scholar 

  • Buyse, G., D. Trouet, T. Voets, L. Missiaen, G. Droogmans, B. Nilius, and J. Eggermont. 1998. Evidence for the intracellular location of chloride channel (ClC)-type proteins: Co-localization of ClC-6a and ClC-6c with the sarco/endoplasmic-reticulum Ca2+ pump SERCA2b. Biochem. J. 330:1015–1021.

    Google Scholar 

  • Buyse, G., T. Voets, J. Tytgat, C. De Greef, G. Droogmans, B. Nilius, and J. Eggermont. 1997. Expression of human pIC1n and C1C-6 in xenopus oocytes induces an identical endogenous chloride conductance. J. Biol. Chem. 272:3615–3621.

    Google Scholar 

  • Catalán, M., M.I. Niemeyer, L.P. Cid, and F.V Sepúlveda. 2004. Basolateral C1C-2 chloride channels in surface colon epithelium: Regulation by a direct effect of intracellular chloride. Gastroenterology 126:1104–1114.

    Google Scholar 

  • Charlet, B.N., R.S. Savkur, G. Singh, A.V Philips, E.A. Grice, and T.A. Cooper. 2002. Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol. Cell 10:45–53.

    Google Scholar 

  • Chen, M.F., and T.Y. Chen. 2001. Different fast-gate regulation by external Cl(−) and H(+) of the muscle-type C1C chloride channels. J. Gen. Physiol. 118:23–32.

    Google Scholar 

  • Chen, T.Y., M.F. Chen, and C.W. Lin. 2003. Electrostatic control and chloride regulation of the fast gating of C1C-0 chloride channels. J. Gen. Physiol. 122:641–651.

    Google Scholar 

  • Chen, T.Y., and C. Miller. 1996. Nonequilibrium gating and voltage dependence of the C1C-0 C1 channel. J. Gen. Physiol. 108:237–250.

    Google Scholar 

  • Cleiren, E., O. Benichou, E. Van Hul, J. Gram, J. Bollerslev, F.R. Singer, K. Beaverson, A. Aledo, M.P. Whyte, T. Yoneyama, M.C. de Vernejoul, and W. Van Hul. 2001. Albers-Schonberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the C1CN7 chloride channel gene. Hum. Mol. Genet. 10:2861–2867.

    Google Scholar 

  • Cohen, J., and K. Schulten. 2004. Mechanism of anionic conduction across C1C. Biophys. J. 86:836–845.

    ADS  Google Scholar 

  • Conte-Camerino, D., M. Mambrini, A. DeLuca, D. Tricarico, S.H. Bryant, V. Tortorella, and G. Bettoni. 1988. Enantiomers of clofibric acid analogs have opposite actions on rat skeletal muscle chloride channels. Pflugers Arch. 413:105–107.

    Google Scholar 

  • Corry, B., M. O’Mara, and S.H. Chung. 2004. Conduction mechanisms of chloride ions in C1C-type channels. Biophys. J. 86:846–860.

    ADS  Google Scholar 

  • Dhani, S.U., and C.E. Bear. 2005. Role of intramolecular and intermolecular interactions in C1C channel and transporter function. Pflügers Arch. 16:16.

    Google Scholar 

  • Doyle, D.A., J. Morais Cabral, R.A. Pfuetzner, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Chait, and R. MacKinnon. 1998. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 280:69–77.

    ADS  Google Scholar 

  • Duffield, M., G. Rychkov, A. Bretag, and M. Roberts. 2003. Involvement of helices at the dimer Interface in C1C-1 common gating. J. Gen. Physiol. 121:149–161.

    Google Scholar 

  • Dutzler, R., E.B. Campbell, M. Cadene, B.T. Chait, and R. MacKinnon. 2002. X-ray structure of a C1C chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature 415:287–294.

    ADS  Google Scholar 

  • Dutzler, R., E.B. Campbell, and R. MacKinnon. 2003. Gating the selectivity filter in C1C chloride channels. Science 300:108–112.

    ADS  Google Scholar 

  • Embark, H.M., C. Bohmer, M. Palmada, J. Rajamanickam, A.W. Wyatt, S. Wallisch, G. Capasso, P. Waldegger, H.W. Seyberth, S. Waldegger, and F. Lang. 2004. Regulation of CLC-Ka/barttin by the ubiquitin ligase Nedd4-2 and the serum and glucocorticoid-dependent kinases. Kidney Int. 66:1918–1925.

    Google Scholar 

  • Engh, A.M., and M. Maduke. 2005. Cysteine accessibility in C1C-0 supports conservation of the C1C intracellular vestibule. J. Gen. Physiol. 125:601–617.

    Google Scholar 

  • Estévez, R., T. Boettger, V Stein, R. Birkenhäger, E. Otto, F. Hildebrandt, and T.J. Jentsch. 2001. Barttin is a Cl channel beta-subunit crucial for renal Cl reabsorption and inner ear K+ secretion. Nature 414:558–561.

    ADS  Google Scholar 

  • Estévez, R., and T.J. Jentsch. 2002. CLC chloride channels: Correlating structure with function. Curr. Opin. Struct. Biol. 12:531–539.

    Google Scholar 

  • Estévez, R., M. Pusch, C. Ferrer-Costa, M. Orozco, and T.J. Jentsch. 2004. Functional and structural conservation of CBS domains from CLC channels. J. Physiol. 557:363–378.

    Google Scholar 

  • Estévez, R., B.C. Schroeder, A. Accardi, T.J. Jentsch, and M. Pusch. 2003. Conservation of chloride channel structure revealed by an inhibitor binding site in C1C-1. Neuron 38:47–59.

    Google Scholar 

  • Fahlke, C., R. Rüdel, N. Mitrovic, M. Zhou, and A.L. George Jr. 1995. An aspartic acid residue important for voltage-dependent gating of human muscle chloride channels. Neuron 15:463–472.

    Google Scholar 

  • Ferroni, S., C. Marchini, M. Nobile, and C. Rapisarda. 1997. Characterization of an inwardly rectifying chloride conductance expressed by cultured rat cortical astrocytes. Glia 21:217–227.

    Google Scholar 

  • Fong, P. 2004. CLC-K channels: If the drug fits, use it. EMBO Rep. 5:565–566.

    Google Scholar 

  • Fong, P., A. Rehfeldt, and T.J. Jentsch. 1998. Determinants of slow gating in C1C-0, the voltage-gated chloride channel of Torpedo marmorata. Am. J. Physiol. 274:C966–C973.

    Google Scholar 

  • Friedrich, T., T. Breiderhoff, and T.J. Jentsch. 1999. Mutational analysis demonstrates that C1C-4 and C1C-5 directly mediate plasma membrane currents. J. Biol. Chem. 274:896–902.

    Google Scholar 

  • Furukawa, T, T. Ogura, Y.J. Zheng, H. Tsuchiya, H. Nakaya, Y. Katayama, and N. Inagaki. 2002. Phosphorylation and functional regulation of C1C-2 chloride channels expressed in Xenopus oocytes by M cyclin-dependent protein kinase. J. Physiol. 540:883–893.

    Google Scholar 

  • Gentzsch, M., L. Cui, A. Mengos, X.B. Chang, J.H. Chen, and J.R. Riordan. 2003. The PDZ-binding chloride channel C1C-3B localizes to the Golgi and associates with cystic fibrosis transmembrane conductance regulator-interacting PDZ proteins. J. Biol. Chem. 278:6440–6449. Epub 2002 Dec 5.

    Google Scholar 

  • George, A.L., Jr., M.A. Crackower, J.A. Abdalla, A.J. Hudson, and G.C. Ebers. 1993. Molecular basis of Thomsen’s disease (autosomal dominant myotonia congenita). Nat. Genet. 3:305–310.

    Google Scholar 

  • Greger, R., and U. Windhorst. 1996. Comprehensive Human Physiology. Springer, Berlin.

    Google Scholar 

  • Gründer, S., A. Thiemann, M. Pusch, and T.J. Jentsch. 1992. Regions involved in the opening of ClC-2 chloride channel by voltage and cell volume. Nature 360:759–762.

    ADS  Google Scholar 

  • Günther, W., A. Luchow, F. Cluzeaud, A. Vandewalle, and T.J. Jentsch. 1998. C1C-5, the chloride channel mutated in Dent’s disease, colocalizes with the proton pump in endocytotically active kidney cells. Proc. Natl. Acad. Sci. USA 95:8075–8080.

    ADS  Google Scholar 

  • Günther, W., N. Piwon, and T.J. Jentsch. 2003. The C1C-5 chloride channel knockout mouse—an animal model for Dent’s disease. Pflügers Arch. 445:456–462. Epub 2002 Nov 29.

    Google Scholar 

  • Gyömörey, K., H. Yeger, C. Ackerley, E. Garami, and C.E. Bear. 2000. Expression of the chloride channel C1C-2 in the murine small intestine epithelium. Am. J. Physiol. Cell Physiol. 279:C1787–C1794.

    Google Scholar 

  • Hanke, W., and C. Miller. 1983. Single chloride channels from Torpedo electroplax. Activation by protons. J. Gen. Physiol. 82:25–45.

    Google Scholar 

  • Hara-Chikuma, M., Y. Wang, S.E. Guggino, W.B. Guggino, and A.S. Verkman.2005. Impaired acidification in early endosomes of C1C-5 deficient proximal tubule. Biochem. Biophys. Res. Commun. 329:941–946.

    Google Scholar 

  • Haug, K., M. Warnstedt, A.K. Alekov, T. Sander, A. Ramirez, B. Poser, S. Maljevic, S. Hebeisen, C. Kubisch, J. Rebstock, S. Horvath, K. Hallmann, J.S. Dullinger, B. Rau, F. Haverkamp, S. Beyenburg, H. Schulz, D. Janz, B. Giese, G. Muller-Newen, P. Propping, C.E. Elger, C. Fahlke, H. Lerche, and A. Heils. 2003. Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies. Nat. Genet. 33:527–532.

    Google Scholar 

  • Hebeisen, S., A. Biela, B. Giese, G. Müller-Newen, P. Hidalgo, and C. Fahlke. 2004. The role of the carboxyl terminus in C1C chloride channel function. J. Biol. Chem. 279:13140–13147. Epub 2004 Jan 12.

    Google Scholar 

  • Hebeisen, S., H. Heidtmann, D. Cosmelli, C. Gonzalez, B. Poser, R. Latorre, O. Alvarez, and C. Fahlke. 2003. Anion permeation in human C1C-4 channels. Biophys. J. 84:2306–2318.

    Google Scholar 

  • Hechenberger, M., B. Schwappach, W.N. Fischer, W.B. Frommer, T.J. Jentsch, and K. Steinmeyer. 1996. A family of putative chloride channels from Arabidopsis and functional complementation of a yeast strain with a CLC gene disruption. J. Biol. Chem. 271:33632–33638.

    Google Scholar 

  • Hille, B. 2001. Ion Channels of Excitable Membranes. Sinauer, Sunderland, MA.

    Google Scholar 

  • Hinzpeter, A., J. Lipecka, F. Brouillard, M. Baudouin-Legros, M. Dadlez, A. Edelman, and J. Fritsch. 2005. Association between Hsp90nand the C1C-2 chloride channel upregulates channel function. Am. J. Physiol. Cell Physiol. 00209.2005.

    Google Scholar 

  • Hori, K., Y. Takahashi, N. Horikawa, T. Furukawa, K. Tsukada, N. Takeguchi, and H. Sakai. 2004. Is the C1C-2 chloride channel involved in the C1-secretory mechanism of gastric parietal cells? FEES Lett. 575:105–108.

    Google Scholar 

  • Hryciw, D.H., J. Ekberg, A. Lee, I.L. Lensink, S. Kumar, W.B. Guggino, D.I. Cook, C.A. Pollock, and P. Poronnik. 2004. Nedd4-2 functionally interacts with C1C-5: Involvement in constitutive albumin endocytosis in proximal tubule cells. J. Biol. Chem. 279:54996–55007. Epub 2004 Oct 15.

    Google Scholar 

  • Hryciw, D.H., G.Y. Rychkov, B.P. Hughes, and A.H. Bretag. 1998. Relevance of the D13 region to the function of the skeletal muscle chloride channel, C1C-1. J. Biol. Chem. 273:4304–4307.

    Google Scholar 

  • Hryciw, D.H., Y. Wang, O. Devuyst, C.A. Pollock, P. Poronnik, and W.B. Guggino. 2003. Cofilin interacts with C1C-5 and regulates albumin uptake in proximal tubule cell lines. J. Biol. Chem. 278:40169–40176. Epub 2003 Aug 6.

    Google Scholar 

  • Humphrey, W., A. Dalke, and K. Schulten. 1996. VMD: Visual molecular dynamics. J. Mol. Graph. 14:33–38.

    Google Scholar 

  • Jentsch, T.J., M. Poet, J.C. Fuhrmann, and A.A. Zdebik. 2005. Physiological functions of CLC C1 channels gleaned from human genetic disease and mouse models. Ann. Rev. Physiol. 67:779–807.

    Google Scholar 

  • Jentsch, T.J., V. Stein, F. Weinreich, and A.A. Zdebik. 2002. Molecular structure and physiological function of chloride channels. Physiol. Rev. 82:503–568.

    Google Scholar 

  • Jentsch, T.J., K. Steinmeyer, and G. Schwarz. 1990. Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes. Nature 348:510–514.

    ADS  Google Scholar 

  • Jordt, S.E., and T.J. Jentsch. 1997. Molecular dissection of gating in the C1C-2 chloride channel. EMBO J. 16:1582–1592.

    Google Scholar 

  • Karsdal, M.A., K. Henriksen, M.G. Sorensen, J. Gram, S. Schaller, M.H. Dziegiel, A.M. Heegaard, P. Christophersen, T.J. Martin, C. Christiansen, and J. Bollerslev. 2005. Acidification of the osteoclastic resorption compartment provides insight into the coupling of bone formation to bone resorption. Am. J. Pathol. 166:467–476.

    Google Scholar 

  • Kasper, D., R. Planells-Cases, J.C. Fuhrmann, O. Scheel, O. Zeitz, K. Ruether, A. Schmitt, M. Poet, R. Steinfeld, M. Schweizer, U. Kornak, and T.J. Jentsch. 2005. Loss of the chloride channel C1C-7 leads to lysosomal storage disease and neurodegeneration. EMBO J. 24:1079–1091. Epub 2005 Feb 10.

    Google Scholar 

  • Kieferle, S., P. Fong, M. Bens, A. Vandewalle, and T.J. Jentsch. 1994. Two highly homologous members of the C1C chloride channel family in both rat and human kidney. Proc. Natl. Acad. Sci. USA 91:6943–6947.

    ADS  Google Scholar 

  • Koch, M.C., K. Steinmeyer, C. Lorenz, K. Ricker, F. Wolf, M. Otto, B. Zoll, F. Lehmann-Horn, K.H. Grzeschik, and T.J. Jentsch. 1992. The skeletal muscle chloride channel in dominant and recessive human myotonia. Science 257:797–800.

    ADS  Google Scholar 

  • Kornak, U., D. Kasper, M.R. Bösl, E. Kaiser, M. Schweizer, A. Schulz, W. Friedrich, G. Delling, and T.J. Jentsch. 2001. Loss of the C1C-7 chloride channel leads to osteopetrosis in mice and man. Cell 104:205–215.

    Google Scholar 

  • Kung, C., and P. Blount. 2004. Channels in microbes: So many holes to fill. Mol. Microbiol. 53:373–380.

    Google Scholar 

  • Li, X., K. Shimada, L.A. Showalter, and S.A. Weinman. 2000. Biophysical properties of C1C-3 differentiate it from swelling-activated chloride channels in Chinese hamster ovary-K1 cells. J. Biol. Chem. 275:35994–35998.

    Google Scholar 

  • Li, X., T. Wang, Z. Zhao, and S.A. Weinman. 2002. The C1C-3 chloride channel promotes acidification of lysosomes in CHO-K1 and Huh-7 cells. Am. J. Physiol. Cell Physiol. 282:C1483–C1491.

    Google Scholar 

  • Liantonio, A., A. Accardi, G. Carbonara, G. Fracchiolla, F. Loiodice, P. Tortorella, S. Traverse, P. Guida, S. Pierno, A. De Luca, D.C. Camerino, and M. Pusch. 2002. Molecular requisites for drug binding to muscle CLC-1 and renal CLC-K channel revealed by the use of phenoxy-alkyl derivatives of 2-(p-chlorophenoxy)propionic acid. Mol. Pharmacol. 62:265–271.

    Google Scholar 

  • Liantonio, A., M. Pusch, A. Picollo, P. Guida, A. De Luca, S. Pierno, G. Fracchiolla, F. Loiodice, P. Tortorella, and D. Conte Camerino. 2004. Investigations of pharmacologic properties of the renal CLC-K1 chloride channel co-expressed with barttin by the use of 2-(p-Chlorophenoxy)propionic acid derivatives and other structurally unrelated chloride channels blockers. J. Am. Soc. Nephrol. 15:13–20.

    Google Scholar 

  • Lin, C.W., and T.Y. Chen. 2003. Probing the pore of C1C-0 by substituted cysteine accessibility method using methane thiosulfonate reagents. J. Gen. Physiol. 122:147–159.

    Google Scholar 

  • Lin, Y.W., C.W. Lin, and T.Y. Chen. 1999. Elimination of the slow gating of C1C-0 chloride channel by a point mutation. J. Gen. Physiol. 114:1–12.

    ADS  Google Scholar 

  • Lipecka, J., M. Bali, A. Thomas, P. Fanen, A. Edelman, and J. Fritsch. 2002. Distribution of C1C-2 chloride channel in rat and human epithelial tissues. Am. J. Physiol. Cell Physiol. 282:C805–C816.

    Google Scholar 

  • Lloyd, S.E., S.H. Pearce, S.E. Fisher, K. Steinmeyer, B. Schwappach, S.J. Scheinman, B. Harding, A. Bolino, M. Devoto, P. Goodyer, S.P. Rigden, O. Wrong, T.J. Jentsch, I.W. Craig, and R.V. Thakker. 1996. A common molecular basis for three inherited kidney stone diseases. Nature 379:445–449.

    ADS  Google Scholar 

  • Lorenz, C., M. Pusch, and T.J. Jentsch. 1996. Heteromultimeric CLC chloride channels with novel properties. Proc. Natl. Acad. Sci. USA 93:13362–13366.

    ADS  Google Scholar 

  • Ludewig, U., T.J. Jentsch, and M. Pusch. 1997a. Analysis of a protein region involved in permeation and gating of the voltage-gated Torpedo chloride channel C1C-0. J. Physiol. 498:691–702.

    Google Scholar 

  • Ludewig, U., T.J. Jentsch, and M. Pusch. 1997b. Inward rectification in C1C-0 chloride channels caused by mutations in several protein regions. J. Gen. Physiol. 110:165–171.

    Google Scholar 

  • Ludewig, U., M. Pusch, and T.J. Jentsch. 1996. Two physically distinct pores in the dimeric C1C-0 chloride channel. Nature 383:340–343.

    ADS  Google Scholar 

  • Maduke, M., D.J. Pheasant, and C. Miller. 1999. High-level expression, functional reconstitution, and quaternary structure of a prokaryotic C1C-type chloride channel. J. Gen. Physiol. 114:713–722.

    Google Scholar 

  • Maduke, M., C. Williams, and C. Miller. 1998. Formation of CLC-0 chloride channels from separated transmembrane and cytoplasmic domains. Biochemistry. 37:1315–1321.

    Google Scholar 

  • Mankodi, A., M.P. Takahashi, H. Jiang, C.L. Beck, W.J. Bowers, R.T. Moxley, S.C. Cannon, and C.A. Thornton. 2002. Expanded CUG repeats trigger aberrant splicing of C1C-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol. Cell 10:35–44.

    Google Scholar 

  • Matsumura, Y., S. Uchida, Y. Kondo, H. Miyazaki, S.B. Ko, A. Hayama, T. Morimoto, W. Liu, M. Arisawa, S. Sasaki, and F. Marumo. 1999. Overt nephrogenic diabetes insipidus in mice lacking the CLC-K1 chloride channel. Nat. Genet. 21:95–98.

    Google Scholar 

  • Matulef, K., and M. Maduke. 2005. Side-dependent inhibition of a prokaryotic C1C by DIDS. Biophys. J. 89:1721–1730.

    ADS  Google Scholar 

  • Middleton, R.E., D.J. Pheasant, and C. Miller. 1996. Homodimeric architecture of a ClC-type chloride ion channel. Nature 383:337–340.

    ADS  Google Scholar 

  • Miller, C. 1982. Open-state substructure of single chloride channels from Torpedo electroplax. Philos. Trans. R. Soc. Lond. B Biol. Sci. 299:401–411.

    ADS  Google Scholar 

  • Miller, C., and M.M. White. 1980. A voltage-dependent chloride conductance channel from Torpedo electroplax membrane. Ann. N.Y. Acad. Sci. 341:534–551.

    ADS  Google Scholar 

  • Miller, C., and M.M. White. 1984. Dimeric structure of single chloride channels from Torpedo electroplax. Proc. Natl. Acad. Sci. USA 81:2772–2775.

    ADS  Google Scholar 

  • Miloshevsky, G.V., and P.C. Jordan. 2004. Anion pathway and potential energy profiles along curvilinear bacterial C1C C1 pores: Electrostatic effects of charged residues. Biophys. J. 86:825–835.

    ADS  Google Scholar 

  • Mindell, J.A., and M. Maduke. 2001. C1C chloride channels. Genome Biol. 2:Reviews 3003. Epub 2001 Feb 7.

    Google Scholar 

  • Mindell, J.A., M. Maduke, C. Miller, and N. Grigorieff. 2001. Projection structure of a ClC-type chloride channel at 6.5 A resolution. Nature 409:219–223.

    ADS  Google Scholar 

  • Mohammad-Panah, R., R. Harrison, S. Dhani, C. Ackerley, L.J. Huan, Y. Wang, and C.E. Bear. 2003. The chloride channel C1C-4 contributes to endosomal acidification and trafficking. J. Biol. Chem. 278:29267–29277.

    Google Scholar 

  • Muth, T.R., and M.J. Caplan. 2003. Transport protein trafficking in polarized cells. Ann. Rev. Cell Dev. Biol. 19:333–366.

    Google Scholar 

  • Nehrke, K., J. Arreola, H.V. Nguyen, J. Pilato, L. Richardson, G. Okunade, R. Baggs, G.E. Shull, and J.E. Melvin. 2002. Loss of hyperpolarization-activated C1(−) current in salivary acinar cells from Clcn2 knockout mice. J. Biol. Chem. 277:23604–23611. Epub 2002 Apr 25.

    Google Scholar 

  • Niemeyer, M.I., L.P. Cid, L. Zúñiga, M. Catalán, and F.V. Sepúlveda. 2003. A conserved pore-lining glutamate as a voltage- and chloride-dependent gate in the C1C-2 chloride channel. J. Physiol. 553:873–879. Epub 2003 Nov 14.

    Google Scholar 

  • Niemeyer, M.I., Y.R. Yusef, I. Cornejo, C.A. Flores, F.V. Sepúlveda, and L.P. Cid. 2004. Functional evaluation of human C1C-2 chloride channel mutations associated with idiopathic generalized epilepsies. Physiol. Genomics 13:13.

    Google Scholar 

  • Peña-Münzenmayer, G., M. Catalán, I. Cornejo, C.D. Figueroa, J.E. Melvin, M.I. Niemeyer, L.P. Cid, and F.V. Sepúlveda. 2005. Basolateral localization of native C1C-2 chloride channels in absorptive intestinal epithelial cells and basolateral sorting encoded by a CBS-2 domain di-leucine motif. J. Cell. Sci. 118:4243–4252.

    Google Scholar 

  • Picollo, A., A. Liantonio, M.P. Didonna, L. Elia, D.C. Camerino, and M. Pusch. 2004. Molecular determinants of differential pore blocking of kidney CLC-K chloride channels. EMBO Rep. 5:584–589. Epub 2004 May 28.

    Google Scholar 

  • Picollo, A., and M. Pusch. 2005. Chloride/proton antiporter activity of mammalian CLC proteins C1C-4 and C1C-5. Nature 436:420–423.

    ADS  Google Scholar 

  • Piwon, N., W. Günther, M. Schwake, M.R. Bösl, and T.J. Jentsch. 2000. C1C-5 Cl-channel disruption impairs endocytosis in a mouse model for Dent’s disease. Nature 408:369–373.

    ADS  Google Scholar 

  • Ponting, C.P. 1997. CBS domains in ClC chloride channels implicated in myotonia and nephrolithiasis (kidney stones). J. Mol. Med. 75:160–163.

    Google Scholar 

  • Pusch, M. 2002. Myotonia caused by mutations in the muscle chloride channel gene CLCN1. Hum. Mutat. 19:423–434.

    Google Scholar 

  • Pusch, M. 2004. Structural insights into chloride and proton-mediated gating of CLC chloride channels. Biochemistry 43:1135–1144.

    Google Scholar 

  • Pusch, M., A. Accardi, A. Liantonio, L. Ferrera, A. De Luca, D.C. Camerino, and F. Conti. 2001. Mechanism of block of single protopores of the Torpedo chloride channel C1C-0 by 2-(p-chlorophenoxy)butyric acid (CPB). J. Gen. Physiol. 118:45–62.

    Google Scholar 

  • Pusch, M., A. Accardi, A. Liantonio, P. Guida, S. Traverso, D.C. Camerino, and F. Conti. 2002. Mechanisms of block of muscle type CLC chloride channels (Review). Mol. Membr. Biol. 19:285–292.

    Google Scholar 

  • Pusch, M., and T.J. Jentsch. 2005. Unique structure and function of chloride transporting CLC proteins. IEEE Trans. Nanobiosci. 4:49–57.

    Google Scholar 

  • Pusch, M., S.E. Jordt, V. Stein, and T.J. Jentsch. 1999. Chloride dependence of hyperpolarization-activated chloride channel gates. J. Physiol. 515:341–353.

    Google Scholar 

  • Pusch, M., A. Liantonio, L. Bertorello, A. Accardi, A. De Luca, S. Pierno, V. Tortorella, and D.C. Camerino. 2000. Pharmacological characterization of chloride channels belonging to the C1C family by the use of chiral clofibric acid derivatives. Mol. Pharmacol. 58:498–507.

    Google Scholar 

  • Pusch, M., U. Ludewig, and T.J. Jentsch. 1997. Temperature dependence of fast and slow gating relaxations of C1C-0 chloride channels. J. Gen. Physiol. 109:105–116.

    Google Scholar 

  • Pusch, M., U. Ludewig, A. Rehfeldt, and T.J. Jentsch. 1995a. Gating of the voltage-dependent chloride channel ClC-0 by the permeant anion. Nature 373:527–531.

    ADS  Google Scholar 

  • Pusch, M., K. Steinmeyer, and T.J. Jentsch. 1994. Low single channel conductance of the major skeletal muscle chloride channel, C1C-1. Biophys. J. 66:149–152.

    Google Scholar 

  • Pusch, M., K. Steinmeyer, M.C. Koch, and T.J. Jentsch. 1995b. Mutations in dominant human myotonia congenita drastically alter the voltage dependence of the ClC-1 chloride channel. Neuron 15:1455–1463.

    Google Scholar 

  • Richard, E.A., and C. Miller. 1990. Steady-state coupling of ion-channel conformations to a transmembrane ion gradient. Science 247:1208–1210.

    ADS  Google Scholar 

  • Riordan, J.R., J.M. Rommens, B. Kerem, N. Alon, R. Rozmahel, Z. Grzelczak, J. Zielenski, S. Lok, N. Plavsic, J.L. Chou, M.L. Drumm, M.C. Iannuzzi, F.S. Collins, and L.-C. Tsui. 1989. Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science 245:1066–1073.

    ADS  Google Scholar 

  • Rutledge, E., J. Denton, and K. Strange. 2002. Cell cycle- and swelling-induced activation of a Caenorhabditis elegans C1C channel is mediated by CeGLC-7alpha/beta phosphatases. J. Cell. Biol. 158:435–444. Epub 2002 Aug 5.

    Google Scholar 

  • Rychkov, G., M. Pusch, M. Roberts, and A. Bretag. 2001. Interaction of hydrophobic anions with the rat skeletal muscle chloride channel C1C-1: Effects on permeation and gating. J. Physiol 530:379–393.

    Google Scholar 

  • Rychkov, G.Y., M. Pusch, D.S. Astill, M.L. Roberts, T.J. Jentsch, and A.H. Bretag. 1996. Concentration and pH dependence of skeletal muscle chloride channel C1C-1. J. Physiol 497:423–435.

    Google Scholar 

  • Rychkov, G.Y., M. Pusch, M.L. Roberts, T.J. Jentsch, and A.H. Bretag. 1998. Permeation and block of the skeletal muscle chloride channel, C1C-1, by foreign anions. J. Gen. Physiol. 111:653–665.

    Google Scholar 

  • Saviane, C., F. Conti, and M. Pusch. 1999. The muscle chloride channel C1C-1 has a double-barreled appearance that is differentially affected in dominant and recessive myotonia. J. Gen. Physiol. 113:457–468.

    Google Scholar 

  • Sayle, R.A., and E.J. Milner-White. 1995. RASMOL: Biomolecular graphics for all. Trends Biochem. Sci. 20:374–376.

    Google Scholar 

  • Schaller, S., K. Henriksen, C. Sveigaard, A.M. Heegaard, N. Helix, M. Stahlhut, M.C. Ovejero, J.V. Johansen, H. Solberg, T.L. Andersen, D. Hougaard, M. Berryman, C.B. Shiodt, B.H. Sorensen, J. Lichtenberg, P. Christophersen, N.T. Foged, J.M. Delaisse, M.T. Engsig, and M.A. Karsdal. 2004. The chloride channel inhibitor NS3736 [corrected] prevents bone resorption in ovariectomized rats without changing bone formation. J. Bone Miner. Res. 19:1144–1153.

    Google Scholar 

  • Scheel, O., A.A. Zdebik, S. Lourdel, and T.J. Jentsch. 2005. Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins. Nature 436:424–427.

    ADS  Google Scholar 

  • Schlingmann, K.P., M. Konrad, N. Jeck, P. Waldegger, S.C. Reinalter, M. Holder, H.W. Seyberth, and S. Waldegger. 2004. Salt wasting and deafness resulting from mutations in two chloride channels. N. Engl. J. Med. 350:1314–1319.

    Google Scholar 

  • Schriever, A.M., T. Friedrich, M. Pusch, and T.J. Jentsch. 1999. CLC chloride channels in Caenorhabditis elegans. J. Biol. Chem. 274:34238–34244.

    Google Scholar 

  • Schwappach, B., S. Stobrawa, M. Hechenberger, K. Steinmeyer, and T.J. Jentsch. 1998. Golgi localization and functionally important domains in the NH2 and COOH terminus of the yeast CLC putative chloride channel Geflp. J. Biol. Chem. 273:15110–15118.

    Google Scholar 

  • Schwiebert, E.M., L.P. Cid-Soto, D. Stafford, M. Carter, C.J. Blaisdell, P.L. Zeitlin, W.B. Guggino, and G.R. Cutting. 1998. Analysis of C1C-2 channels as an alternative pathway for chloride conduction in cystic fibrosis airway cells. Proc. Natl. Acad. Sci. USA 95:3879–3884.

    ADS  Google Scholar 

  • Scott, J.W., S.A. Hawley, K.A. Green, M. Anis, G. Stewart, G.A. Scullion, D.G. Norman, and D.G. Hardie. 2004. CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J. Clin. Invest. 113:274–284.

    Google Scholar 

  • Sik, A., R.L. Smith, and T.F. Freund. 2000. Distribution of chloride channel-2-immunoreactive neuronal and astrocytic processes in the hippocampus. Neuroscience 101:51–65.

    Google Scholar 

  • Simon, D.B., R.S. Bindra, T.A. Mansfield, C. Nelson-Williams, E. Mendonca, R. Stone, S. Schurman, A. Nayir, H. Alpay, A. Bakkaloglu, J. Rodriguez-Soriano, J.M. Morales, S.A. Sanjad, C.M. Taylor, D. Pilz, A. Brem, H. Trachtman, W. Griswold, G.A. Richard, E. John, and R.P. Lifton. 1997. Mutations in the chloride channel gene, CLCNKB, cause Bartter’s syndrome type III. Nat. Genet. 17:171–178.

    Google Scholar 

  • Simon, D.B., F.E. Karet, J.M. Hamdan, A.D. Pietro, S.A. Sanjad, and R.P. Lifton. 1996a. Bartter’s syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2CI cotransporter NKCC2. Nat. Genet. 13:183–188.

    Google Scholar 

  • Simon, D.B., F.E. Karet, J. Rodriguez-Soriano, J.H. Hamdan, A. DiPietro, H. Trachtman, S.A. Sanjad, and R.P. Lifton. 1996b. Genetic heterogeneity of Barter’s syndrome revealed by mutations in the K+ channel, ROMK. Nat. Genet. 14:152–156.

    Google Scholar 

  • Staley, K., R. Smith, J. Schaack, C. Wilcox, and T.J. Jentsch. 1996. Alteration of GABAA receptor function following gene transfer of the CLC-2 chloride channel. Neuron 17:543–551.

    Google Scholar 

  • Steinmeyer, K., R. Klocke, C. Ortland, M. Gronemeier, H. Jockusch, S. Gründer, and T.J. Jentsch. 1991a. Inactivation of muscle chloride channel by transposon insertion in myotonic mice. Nature 354:304–308.

    ADS  Google Scholar 

  • Steinmeyer, K., C. Lorenz, M. Pusch, M.C. Koch, and T.J. Jentsch. 1994. Multimeric structure of C1C-1 chloride channel revealed by mutations in dominant myotonia congenita (Thomsen). EMBO J. 13:737–743.

    Google Scholar 

  • Steinmeyer, K., C. Ortland, and T.J. Jentsch. 1991b. Primary structure and functional expression of a developmentally regulated skeletal muscle chloride channel. Nature 354:301–304.

    ADS  Google Scholar 

  • Steinmeyer, K., B. Schwappach, M. Bens, A. Vandewalle, and T.J. Jentsch. 1995. Cloning and functional expression of rat CLC-5, a chloride channel related to kidney disease. J. Biol. Chem. 270:31172–31177.

    Google Scholar 

  • Stobrawa, S.M., T. Breiderhoff, S. Takamori, D. Engel, M. Schweizer, A.A. Zdebik, M.R. Bösl, K. Ruether, H. Jahn, A. Draguhn, R. Jahn, and T.J. Jentsch. 2001. Disruption of C1C-3, a chloride channel expressed on synaptic vesicles, leads to a loss of the hippocampus. Neuron 29:185–196.

    Google Scholar 

  • Strange, K. 2003. From genes to integrative physiology: Ion channel and transporter biology in Caenorhabditis elegans. Physiol. Rev. 83:377–415.

    Google Scholar 

  • Thiemann, A., S. Gründer, M. Pusch, and T.J. Jentsch. 1992. A chloride channel widely expressed in epithelial and non-epithelial cells. Nature 356:57–60.

    ADS  Google Scholar 

  • Traverso, S., L. Elia, and M. Pusch. 2003. Gating competence of constitutively open CLC-0 mutants revealed by the interaction with a small organic Inhibitor. J. Gen. Physiol. 122:295–306.

    Google Scholar 

  • Uchida, S., S. Sasaki, T. Furukawa, M. Hiraoka, T. Imai, Y. Hirata, and F. Marumo. 1993. Molecular cloning of a chloride channel that is regulated by dehydration and expressed predominantly in kidney medulla. J. Biol. Chem. 268:3821–3824.

    Google Scholar 

  • Uchida, S., S. Sasaki, K. Nitta, K. Uchida, S. Horita, H. Nihei, and F. Marumo. 1995. Localization and functional characterization of rat kidney-specific chloride channel, C1C-K1. J. Clin. Invest. 95:104–113.

    Google Scholar 

  • Vandewalle, A., F. Cluzeaud, M. Bens, S. Kieferle, K. Steinmeyer, and T.J. Jentsch. 1997. Localization and induction by dehydration of C1C-K chloride channels in the rat kidney. Am. J. Physiol. 272:F678–F688.

    Google Scholar 

  • Vanoye, C.G., and A.L. George Jr. 2002. Functional characterization of recombinant human C1C-4 chloride channels in cultured mammalian cells. J. Physiol. 539:373–383.

    Google Scholar 

  • Waldegger, S., and T.J. Jentsch. 2000. Functional and structural analysis of C1C-K chloride channels involved in renal disease. J. Biol. Chem. 275:24527–24533.

    Google Scholar 

  • Wang, S.S., O. Devuyst, P.J. Courtoy, X.T. Wang, H. Wang, Y. Wang, R.V. Thakker, S. Guggino, and W.B. Guggino. 2000. Mice lacking renal chloride channel, CLC-5, are a model for Dent’s disease, a nephrolithiasis disorder associated with defective receptor-mediated endocytosis. Hum. Mol. Genet. 9:2937–2945.

    Google Scholar 

  • Weinreich, F., and T.J. Jentsch. 2001. Pores formed by single subunits in mixed dimers of different CLC chloride channels. J. Biol. Chem. 276:2347–2353.

    Google Scholar 

  • Yin, J., Z. Kuang, U. Mahankali, and T.L. Beck. 2004. Ion transit pathways and gating in C1C chloride channels. Proteins 57:414–421.

    Google Scholar 

  • Zdebik, A.A., J.E. Cuffe, M. Bertog, C. Korbmacher, and T.J. Jentsch. 2004. Additional disruption of the C1C-2 Cl channel does not exacerbate the cystic fibrosis phenotype of cystic fibrosis transmembrane conductance regulator mouse models. J. Biol. Chem. 279:22276–22283.

    Google Scholar 

  • Zheng, Y.J., T. Furukawa, T. Ogura, K. Tajimi, and N. Inagaki. 2002. M phase-specific expression and phosphorylation-dependent ubiquitination of the C1C-2 channel. J. Biol Chem. 277:32268–32273. Epub 2002 Jun 24.

    Google Scholar 

  • Zúñiga, L., M.I. Niemeyer, D. Varela, M. Catalán, L.P. Cid, and F.V. SepZúlveda. 2004. The voltage-dependent C1C-2 chloride channel has a dual gating mechanism. J. Physiol 555:671–682. Epub 2004 Jan 14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Pusch, M. (2007). Chloride Transporting CLC Proteins1 . In: Chung, SH., Andersen, O.S., Krishnamurthy, V. (eds) Biological Membrane Ion Channels. Biological And Medical Physics Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/0-387-68919-2_8

Download citation

Publish with us

Policies and ethics