Skip to main content

Brownian Dynamics: Simulation for Ion Channel Permeation1

  • Chapter
Biological Membrane Ion Channels

Abstract

All living cells are surrounded by a thin membrane, composed of two layers of phospholipid molecules, called the lipid bilayer. This thin membrane effectively confines some ions and molecules inside and exchanges others with outside and acts as a hydrophobic, low dielectric barrier to hydrophilic molecules. Because of a large difference between the dielectric constants of the membrane and electrolyte solutions, no charged particles, such as Na+, K+, and Cl ions, can jump across the membrane. The amount of energy needed to transport one monovalent ion, in either direction across the membrane, known as the Born energy, is enormously high. For a living cell to function, however, the proper ionic gradient has to be maintained, and ions at times must move across the membrane to maintain the potential difference across the membrane and to generate synaptic and action potentials. The delicate tasks of regulating the transport of ions across the membrane are carried out by biological nanotubes called “ion channels,” water-filled conduits inserted across the cell membrane through which ions can freely move in and out when the gates are open. These ion channels can be viewed as biological sub-nanotubes, the typical pore diameters of which are ~10−9 m or 10 Å.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Accardi, A., and C. Miller. 2004. Secondary active transport mediated by a prokaryotic homologue of ClC Cl+ channels. Nature 427:803–807.

    Article  ADS  Google Scholar 

  • Allen, T.W., O.S. Andersen, and B. Roux. 2004. On the importance of atomic fluctuations, protein flexibility, and solvent in ion permeation. J. Gen. Physiol. 124:679–690.

    Article  Google Scholar 

  • Allen, T.W., T. Bastug, S. Kuyucak, and S.H. Chung. 2003. Gramicidin A channel as a test ground for molecular dynamics force fields. Biophys. J. 84:2159–2168.

    Article  Google Scholar 

  • Allen, T.W., and S.H. Chung. 2001. Brownian dynamics study of an open-state KcsA potassium channel. Biochim. Biophys. Acta Biomembr. 1515:83–91.

    Article  Google Scholar 

  • Allen, T.W., M. Hoyles, S. Kuyucak, and S.H. Chung. 1999. Molecular and Brownian dynamics study of ion permeation across the potassium channel. Chem. Phys. Letts. 313:358–365.

    Article  ADS  Google Scholar 

  • Allen, T.W., S. Kuyucak, and S.H. Chung. 2000. Molecular dynamics estimates of ion diffusion in model hydrophobic and KcsA potassium channels. Biophys. Chem. 86:1–14.

    Article  Google Scholar 

  • Bass, R.B., P. Stropo, M. Baraclay, and D.C. Reece. 2002. Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298:1582–1587.

    Article  ADS  Google Scholar 

  • Bek, S., and E. Jakobsson. 1994. Brownian dynamics study of a multiply occupied cation channels: Application to understanding permeation in potassium channel. Biophys. J. 66:1028–1038.

    Article  Google Scholar 

  • Billingsley, P. 1986. Probability and Measure. Wiley, New York.

    MATH  Google Scholar 

  • Burykin, A., C.N. Schutz, J. Villa, and A.Warshel. 2002. Simulations of ion current realistic models of ion channels: KcsA potassium channel. Proteins Struct. Funct. Genet. 47:265–280.

    Article  Google Scholar 

  • Chang, G., R.H. Spencer, A.T. Lee, M.T. Barclay, and D.C. Rees. 1998. Structure of the MscL homolog from mycobacterium tuberculosis: A gated mechanosensitive channel. Science 282:2220–2226.

    Article  ADS  Google Scholar 

  • Chung, S.H., T.W. Allen, M. Hoyles, and S. Kuyucak. 1999. Permeation of ions across the potassium channel: Brownian dynamics studies. Biophys. J. 77:2517–2533.

    Article  Google Scholar 

  • Chung, S.H., T.W. Allen, and S. Kuyucak. 2002a. Conducting-state properties of the KcsA potassium channel from molecular and Brownian dynamics simulations. Biophys. J. 82:628–645.

    Article  Google Scholar 

  • Chung, S.H., T.W. Allen, and S. Kuyucak. 2002b. Modeling diverse range of potassium channels with Brownian dynamics. Biophys. J. 83:263–277.

    Article  ADS  Google Scholar 

  • Chung, S.H., and S. Kuyucak. 2002. Recent advances in ion channel research. Biochim. Biophys. Acta Biomembr. 1565:267–286.

    Article  Google Scholar 

  • Chung, S.H., M. Hoyles, T.W. Allen, and S. Kuyucak. 1998. Study of ionic currents across a model membrane channel using Brownian dynamics. Biophys. J. 75:793–809.

    Article  ADS  Google Scholar 

  • Coalson, R., and M.G. Kurnikova. 2005. Poisson–Nernst–Planck theory approach to the calculation of current through biological ion channels. IEEE Trans. Nanobiosci. 4:81–93.

    Article  Google Scholar 

  • Coalson, R., and M.G. Kurnikova. 2006. Poisson–Nernst–Planck theory of ion permeation through biological channels. In: Handbook of Ion Channels: Dynamics, Structure and Application. S.H. Chung, O.S. Andersen, and V. Krishnamurthy, editors. Springer-Verlag, New York.

    Google Scholar 

  • Cooper, K.E., E. Jakobsson, and P. Wolynes. 1985. The theory of ion transport through membrane channels. Prog. Biophys. Mol. Biol. 46:51–96.

    Article  Google Scholar 

  • Coronado, R., R.L. Rosenberg, and C. Miller. 1980. Ionic selectivity, saturation, and block in a K+-selective channel from sarcoplasmic reticulum. J. Gen. Physiol. 76:425–446.

    Article  Google Scholar 

  • Corry, B., T.W. Allen, S. Kuyucak, and S.H. Chung. 2001. Mechanisms of permeation and selectivity in calcium channels. Biophys. J. 80:195–214.

    Article  Google Scholar 

  • Corry, B., S. Kuyucak, and S.H. Chung. 2003. Dielectric self-energy in Poisson–Boltzmann and Poisson–Nernst–Planck models of ion channels. Biophys. J. 84:3594–3606.

    Article  Google Scholar 

  • Corry, B., M. O’Mara, and S.H. Chung. 2004a. Permeation dynamics of chloride ions in the ClC-0 and ClC-1 channels. Chem. Phys. Lett. 386:233–238.

    Article  ADS  Google Scholar 

  • Corry, B., M. O’Mara, and S.H. Chung. 2004b. conduction mechanisms of chloride ions in ClC-type channels. Biophys. J. 86:846–860.

    Article  ADS  Google Scholar 

  • Cuello, L.G., J.G. Romero, D.M. Cortes, and E. Perozo. 1998. pH dependent gating in the Streptomyces lividans K+ channel. Biochemistry 37:3229–3236.

    Article  Google Scholar 

  • Doyle, D.A., J.M. Cabral, R.A. Pfuetzner, A. Kuo, J.M. Gulbis, S.L. Cohne, B.T. Chait, and R. MacKinnon. 1998. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 280:69–77.

    Article  ADS  Google Scholar 

  • Dutzler, R., E.B. Campbell, M. Cadene, B.T. Chait, and R. MacKinnon. 2002. X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature 415:287–294.

    Article  ADS  Google Scholar 

  • Dutzler, R., E.B. Campbell, and R. MacKinnon. 2003. Gating the selectivity in ClC chloride channels. Science 300:108–112.

    Article  ADS  Google Scholar 

  • Edwards, S., B. Corry, S. Kuyucak, and S.H. Chung. 2002. Continuum electrostatics fails to describe ion permeation in the gramicidin channel. Biophys. J. 83:1348–1360.

    Article  ADS  Google Scholar 

  • Eisenberg, R.S. 1999. From structure to function in open ionic channels. J. Membr. Biol. 171:1–24.

    Article  Google Scholar 

  • Fahlke, C. 2001. Ion permeation and selectivity in ClC-type chloride channels. Am. J. Renal Physiol. 280:F748–F758.

    Google Scholar 

  • Garofoli, S., and P.C. Jordan. 2003. Modeling permeation energetics in the KcsA potassium channel. Biophys. J. 84:2814–2830.

    Article  ADS  Google Scholar 

  • Gihman, I., and A. Skorohod. 1972. Stochastic Differential Equations. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Grottesi, A., C. Domene, S. Haider, and M.S.P. Sansom. 2005. Molecular dynamics simulation approaches to K channels: Conformational flexibility and physiological function. IEEE Trans. Nanobiosci. 4:112–120.

    Article  Google Scholar 

  • Grottesi, A., S. Haider, and M.S.P. Sansom. 2006. Molecular dynamics simulation approaches to K channels. In: Handbook of Ion Channels: Dynamics, Structure and Application. S.H. Chung, O.S. Andersen, and V. Krishnamurthy, editors. Springer-Verlag, New York.

    Google Scholar 

  • Guàrdia, E., R. Rey, and J. Padró. 1991a. Na+–Na+ and Cl–Cl- ion pairs in water: Mean force potentials by constrained molecular dynamics. J. Chem. Phys. 95:2823–2831.

    Article  ADS  Google Scholar 

  • Guàrdia, E., R. Rey, and J. Padró. 1991b. Potential of mean force by constrained molecular dynamics: A sodium chloride ion-pair in water. J. Chem. Phys. 55:187–195.

    Google Scholar 

  • Heginbotham, L., M. LeMasurier, L. Kolmakova-Partensky, and C. Miller. 1999. Single Streptomyces lividans K+ channels: Functional asymmetries and sidedness of proton activation. J. Gen. Physiol. 114:551–559.

    Article  Google Scholar 

  • Hille, B. 2001. Ionic Channels of Excitable Membranes, 3rd Ed. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Im, W., and B. Roux. 2002a. Ion permeation and selectivity of ompf porin:A theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory. J. Mole. Biol. 322:851–869.

    Article  Google Scholar 

  • Im, W., and B. Roux. 2002b. Ions and counterions in a biological channel: A molecular dynamics simulation of ompf porin from Escherichia coli in an explicit membrane with 1 M KCl aqueous salt solution. J. Mol. Biol. 319:1177–1197.

    Article  Google Scholar 

  • Jakobsson, E., and W.W. Chiu. 1987. Stochastic theory of singly occupied ion channels. Biophys. J. 52:33–45.

    Article  Google Scholar 

  • Jentsch, T.J., T. Friedrich, A. Schriever, and H. Yamada. 1999. The ClC chloride channel family. Pflügers Arch. 437:783–795.

    Article  Google Scholar 

  • Jordan, P.C. 1999. Ion permeation and chemical kinetics. J. Gen. Physiol. 114:601–604.

    Article  Google Scholar 

  • Jordan, P.C. 2005. Semimicroscopic modeling of permeation energetics in ion channels. IEEE Trans. Nanobiosci. 4:94–101.

    Article  Google Scholar 

  • Jordan, P.C. 2006. A mesoscopic-microscopic perspective on ion channel permeation energetics: The semi-microscopic approach. In: Handbook of Ion Channels: Dynamics, Structure and Application. S.H. Chung, O.S. Andersen, and V. Krishnamurthy, editors. Springer-Verlag, New York.

    Google Scholar 

  • Karatzas, I., and S.E. Shreve. 1991. Brownian Motion and Stochastic Calculus. Springer-Verlag, New York.

    MATH  Google Scholar 

  • Kloeden, P.E., and E. Platen. 1992. Numerical Solution of Stochastic Differential Calculus. Springer-Verlag, Berlin.

    Google Scholar 

  • Krishnamurthy, V., and S.H. Chung. 2005. Brownian dynamics simulation for modeling ion permeation across bio-nanotubes. IEEE Trans. Nanobiosci. 4:102–111.

    Article  Google Scholar 

  • Krishnamurthy, V., and S.H. Chung. 2006. Adaptive Brownian dynamics simulation for estimating potential of mean force in ion channel permeation. IEEE Trans. Nanobiosci. 5:126–138.

    Article  Google Scholar 

  • Krishnamurthy, V., M. Hoyles, R. Saab, and S.H. Chung. 2006. Permeation in gramicidin ion channels by directly estimating the potential of mean force using Brownian dynamics simulation. J. Comput. Theoret. Nanosci. (in press).

    Google Scholar 

  • LeMasurier, M., L. Heginbotham, and C. Miller. 2001. KcsA: It’s a potassium channel. J. Gen. Physiol. 118:303–313.

    Article  Google Scholar 

  • Long, S.B., E.B. Campbell, and R. MacKinnon. 2004a. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–903.

    Article  ADS  Google Scholar 

  • Long, S.B., E.B. Campbell, and R. MacKinnon. 2004b. Voltage sensor of Kv1.2: Structural basis of electromechanical coupling. Science 309:903–908.

    Article  ADS  Google Scholar 

  • Maduke, M., C. Miller, and J.A. Mindell. 2000. A decade of ClC chloride channels: Structure, mechanism, and many unsettled questions. Annu. Rev. Biophys. Biomol. Struct. 29:411–438.

    Article  Google Scholar 

  • Mashl, R.J., Y. Tang, J. Schnitzer, and E. Jakobsson. 2001. Hierarchical approach to predicting permeation in ion channels. Biophys. J. 81:2473–2483.

    Article  Google Scholar 

  • McCleskey, E.M. 1999. Calcium channel permeation:Afield in flux. J. Gen. Physiol. 113:765–772.

    Article  Google Scholar 

  • Meuser, D., H. Splitt, R. Wagner, and H. Schrempf. 1999. Explorign the open pore of the potassium channel from Steptomyces lividans. FEBS Letts. 462:447–452.

    Article  Google Scholar 

  • Miller, C. 1982. Open-state substructure of single chloride channels from torpedo electroplax. Phil. Trans. R. Soc. Lond. B 299:401–411.

    ADS  Google Scholar 

  • Noskov, S.Yu., S. Bernéche, and B. Roux. 2004. Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature 31:830–834.

    Article  ADS  Google Scholar 

  • O’Mara, M., P.H. Barry, and S.H. Chung. 2003. A model of the glycine receptor deduced from Brownian dynamics studies. Proc. Natl. Acad. Sci. USA 100:4310–4315.

    Article  ADS  Google Scholar 

  • O’Mara, M., B. Cromer, M. Parker, and S.H. Chung. 2005. Homology model of GABAA channel examined with Brownian dynamics. Biophys. J. 88:3286–3299.

    Article  Google Scholar 

  • Partenskii, M.B., and P.C. Jordan. 1992. Theoretical perspectives on ion-channel electrostatics: Continuum and microscopic approaches. Q. Rev. Biophys. 25:477–510.

    Article  Google Scholar 

  • Pitera, J.W., M. Falta, and W.F. van Gunsteren. 2001. Dielectric properties of proteins from simulation: The effects of solvent, ligands, pH, and temperature. Biophys. J. 80:2546–2555.

    Article  Google Scholar 

  • Roux, R., S. Bernéche, and W. Im. 2000. Ion channels, permeation, and electrostatics: Insight into the function of KcsA. Biochemistry 39:13295–13306.

    Article  Google Scholar 

  • Sanders, J.A., and F. Verhulst. 1985. Averaging Methods in Nonlinear Dynamical Systems. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Schrempf, H., O. Schmidt, R. Kümerlen, S. Hinnah, D. Müller, M. Betzler, T. Steinkamp, and R.Wagner. 1995. A prokaryotic potassium ion channel with two predicted transmembrane segment from Streptomyces lividans. EMBO J. 14:5170–5178.

    Google Scholar 

  • Schutz, C.N., and A. Warshel. 2001. What are the dielectric “constants” of proteins and how to validate electrostatic model. Proteins 44:400–417.

    Article  Google Scholar 

  • Simonson, T., and C.L. Brooks III. 1996. Charge screening and the dielectric constant of proteins: Insights from molecular dynamics. J. Am. Chem. Soc. 118:8452–8458.

    Article  Google Scholar 

  • Smith, P.E., R.M. Brunne, A.E. Mark, and W.F. van Gunsteren. 1993. Dielectric properties of trypsin inhibitor and lysozyme calculated from molecular dynamics simulations. J. Phys. Chem. 97:2009–2014.

    Article  Google Scholar 

  • Stillinger, F.H., and A. Rahman. 1974. Improved simulation of liquid water by molecular dynamics. J. Chem. Phys. 60:1545–1557.

    Article  ADS  Google Scholar 

  • Tieleman, D.P., P.C. Biggin, G.R. Smith, and M.S.P. Sansom. 2001. Simulation approaches to ion channel structure-function relationships. Q. Rev. Biophys.34:473–561.

    Article  Google Scholar 

  • Unwin, N. 2005. Refined structure of the nicotinic acetylcholine receptor at 4 Å resolution. J. Mol. Biol. 346:967–989.

    Article  Google Scholar 

  • van Gunsteren, W., H. Berendsen, and J. Rullman. 1981. Stochastic dynamics for molecules with constraints Brownian dynamics of n-alkalines. Mol. Phys. 44:69–95.

    Article  ADS  Google Scholar 

  • Vazquez, F.J., and V. Krishnamurthy. 2003. Implementation of gradient estimation to a constrained Markov decision problem. In: Proceedings of 42nd IEEE Conference on Decision and Control, pp. 4841–4846.

    Google Scholar 

  • Vora, T., B. Corry, and S.H. Chung. 2004. A model of sodium channels. Biochim. Biophys. Acta Biomembr. 1668:106–116.

    Article  Google Scholar 

  • Wong, E., and B. Hajek. 1985. Stochastic Processes in Engineering System, 2nd Ed. Springer-Verlag, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Chung, SH., Krishnamurthy, V. (2007). Brownian Dynamics: Simulation for Ion Channel Permeation1 . In: Chung, SH., Andersen, O.S., Krishnamurthy, V. (eds) Biological Membrane Ion Channels. Biological And Medical Physics Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/0-387-68919-2_15

Download citation

Publish with us

Policies and ethics