Skip to main content

A Mesoscopic–Microscopic Perspective on Ion Channel Permeation Energetics: The Semi-Microscopic Approach1

  • Chapter
Biological Membrane Ion Channels

Part of the book series: Biological And Medical Physics Biomedical Engineering ((BIOMEDICAL))

  • 1817 Accesses

Abstract

Understanding how physiological ion channels simultaneously exhibit the apparently contradictory properties of high throughput and great discrimination is a long-standing theoretical problem. These nanodevices all operate on the same basic principle: ions, solvated by bulk water, lose a significant part of their hydration shell as they pass through a constriction where a chemical selection process occurs (Hille, 2001). High throughput requires that the chosen ion faces no significant energy barrier, which would forbid its entry. On first blush, it seems that falling into a deep well is also forbidden, since that would apparently trap it in the channel and block further passage. While generally true, some channels function in multi-ion mode, so that they are permanently ion-occupied; permeation then occurs with the entry of a second (or third) ion, repelling the prior occupant and leading to conduction. In all instances, high selectivity requires that there is a mechanism by which all other physiologically prevalent ions face significant energetic discrimination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aksimentiev, A., and K. Schulten. 2005. Imaging α-hemolysin with molecular dynamics: Ionic conductance, osmotic permeability, and the electrostatic potential map. Biophys. J. 88:3745–3761.

    Article  Google Scholar 

  • Allen, T.W., O.S. Andersen, and B. Roux. 2004. Energetics of ion conduction through the gramicidin channel. Proc. Natl. Acad. Sci. USA 101:117–122.

    Article  ADS  Google Scholar 

  • Allen, T.W., T. Bastug, S. Kuyucak, and S.H. Chung. 2003. Gramicidin A channel as a test ground for molecular dynamics force fields. Biophys. J. 84:2159–2168.

    Article  Google Scholar 

  • Allen, T.W., A. Bilznyuk, A.P. Rendell, S. Kuyucak, and S.H. Chung. 2000. The potassium channel: Structure, selectivity and diffusion. J. Chem. Phys. 112:8191–8204.

    Article  ADS  Google Scholar 

  • Andersen, O.S. 1983. Ion movement through gramicidin A channels. Single-channel measurements at very high potentials. Biophys. J. 41:119–133.

    Article  ADS  Google Scholar 

  • Arseniev, A.S., I.L. Barsukov, V.F. Bystrov, A.L. Lomize, and Y.A. Ovchinnikov. 1985. 1H-NMR study of gramicidin A transmembrane ion channel. Head-to-head right-handed, single-stranded helices. FEBS Lett. 186:168–174.

    Article  Google Scholar 

  • Beglov, D., and B. Roux. 1994. Finite representation of an infinite bulk system— solvent boundary potential for computer-simulations. J. Chem. Phys. 100:9050–9063.

    Article  ADS  Google Scholar 

  • Berendsen, H.J.C., J.P.M. Postma, W.F. van Gunsteren, and J. Hermans. 1981. Interaction models for water in relation to protein hydration. In: Intermolecular Forces. B. Pullman editor. Reidel, Dordrecht, pp. 331–342.

    Google Scholar 

  • Bernèche, S., and B. Roux. 2001. Energetics of ion conduction through the K+ channel. Nature 414:73–77.

    Article  ADS  Google Scholar 

  • Bernèche, S., and B. Roux. 2003. A microscopic view of ion conduction through the K+ channel. PNAS 100:8644–8648.

    Article  ADS  Google Scholar 

  • Beveridge, D.L., and G.W. Schnuelle. 1975. Free energy of a charge distribution in concentric dielectric continua. J. Phys. Chem. 79:2562–2566.

    Article  Google Scholar 

  • Bezanilla, F., and C.M. Armstrong. 1972. Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid axon. J. Gen. Physiol. 60:588–608.

    Article  Google Scholar 

  • Born, M. 1920. Volumen und hydrationswarme der Ionen. Zeit. für Physik. 1:45–48.

    Article  ADS  Google Scholar 

  • Burykin, A., C.N. Schutz, J. Villa, and A.Warshel. 2002. Simulations of ion current in realistic models of ion channels: The KcsA potassium channel. Proteins 47:265–280.

    Article  Google Scholar 

  • Chen, D.P., V. Barcilon, and R.S. Eisenberg. 1992. Constant fields and constant gradients in open ionic channels. Biophys. J. 61:1372–1393.

    Article  Google Scholar 

  • Chung, S.H., T.W. Allen, M. Hoyles, and S. Kuyucak. 1999. Permeation of ions across the potassium channel: Brownian dynamics studies. Biophys. J. 77:2517–2533.

    Article  Google Scholar 

  • Chung, S.H., T.W. Allen, and S. Kuyucak. 2002a. Conducting-state properties of the KcsA potassium channel from molecular and Brownian dynamics simulations. Biophys. J. 82:628–645.

    Article  Google Scholar 

  • Chung, S.H., T.W. Allen, and S. Kuyucak. 2002b. Modeling diverse range of potassium channels with Brownian dynamics. Biophys. J. 83:263–277.

    Article  ADS  Google Scholar 

  • Consiglio, J.F., and S.J. Korn. 2004. Influence of permeant ions on voltage sensor function in the Kv2.1 potassium channel. J. Gen. Physiol. 123:387–400.

    Article  Google Scholar 

  • Cornell, W.D., P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz, D.M. Ferguson, D.C. Spellmeyer, T. Fox, J.W. Caldwell, and P.A. Kollman. 1995. A 2nd generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules. J. Am. Chem. Soc. 117:5179–5197.

    Article  Google Scholar 

  • Corry, B., S. Kuyucak, and S.H. Chung. 2000. Tests of continuum theories as models of ion channels. II. Poisson—Nernst—Planck theory versus Brownian dynamics. Biophys. J. 78:2364–2381.

    Article  Google Scholar 

  • Corry, B., M. O’Mara, and S.-H. Chung. 2004. Conduction mechanisms of chloride ions in ClC-type channels. Biophys. J. 86:846–860.

    Article  ADS  Google Scholar 

  • Dorman, V., M.B. Partenskii, and P.C. Jordan. 1996. A semi-microscopic Monte Carlo study of permeation energetics in a gramicidin-like channel: The origin of cation selectivity. Biophys. J. 70:121–134.

    Article  ADS  Google Scholar 

  • Dorman, V.L., and P.C. Jordan. 2003. Ion—water interaction potentials in the semimicroscopic model. J. Chem. Phys. 118:1333–1340.

    Article  ADS  Google Scholar 

  • Dorman, V.L., and P.C. Jordan. 2004. Ionic permeation free energy in gramicidin: A semimicroscopic perspective. Biophys. J. 86:3529–3541.

    Article  ADS  Google Scholar 

  • Doyle, D.A., J. Morais-Cabral, R.A. Pfuetzner, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Chait, and R. MacKinnon. 1998. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 280:69–77.

    Article  ADS  Google Scholar 

  • Edwards, S., B. Corry, S. Kuyucak, and S.H. Chung. 2002. Continuum electrostatics fails to describe ion permeation in the gramicidin channel. Biophys. J. 83:1348–1360.

    Article  ADS  Google Scholar 

  • Eisenberg, R.S. 1999. From structure to function in open ionic channels. J. Membr. Biol. 171:1–24.

    Article  Google Scholar 

  • Eisenman, G. 1962. Cation selective glass electrodes and their mode of operation. Biophys. J. 2(2, Pt 2):259–323.

    Article  ADS  Google Scholar 

  • Fettiplace, R., D.M. Andrews, and D.A. Haydon. 1971. Thickness, composition and structure of some lipid bilayers and natural membranes. J. Membr. Biol. 5:277–296.

    Article  Google Scholar 

  • French, R.J., and J.B. Wells. 1977. Sodium ions as blocking agents and charge carriers in the potassium channel of squid giant axon. J. Gen. Physiol. 70:707–724.

    Article  Google Scholar 

  • Garofoli, S., and P.C. Jordan. 2003. Modeling permeation energetics in the KcsA potassium channel. Biophys. J. 84:2814–2830.

    Article  ADS  Google Scholar 

  • Grunwald, E. 1996. Thermodynamics of Molecular Species. Wiley-Interscience, New York.

    Google Scholar 

  • Hasted, J.B. 1973. In Dielectric Properties. F. Franks, editor. Water, a Comprehensive Treatise, Vol. 1. Plenum, New York, pp. 405–458.

    Google Scholar 

  • Heginbotham, L., M. LeMasurier, L. Kolmakova-Partensky, and C. Miller. 1999. Single Streptomyces lividans K+ channels: Functional asymmetries and sidedness of proton activation. J. Gen. Physiol. 114:551–560.

    Article  Google Scholar 

  • Hille, B. 2001. Ionic Channels of Excitable Membranes, 3rd Ed. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Im, W., and B. Roux. 2002. Ion permeation and selectivity of OmpF porin: A theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory. J. Mol. Biol. 322:851–869.

    Article  Google Scholar 

  • Immke, D., M. Wood, L. Kiss, and S.J. Korn. 1999. Potassium-dependent changes in the conformation of the Kv2.1 potassium channel pore. J. Gen. Physiol. 113:819–836.

    Article  Google Scholar 

  • Jackson, J.D. 1962. Classical Electrodynamics. John Wiley, New York.

    Google Scholar 

  • Jiang, Y., A. Lee, J. Chen, M. Cadene, B.T. Chait, and R. MacKinnon. 2002. The open pore conformation of potassium channels. Nature 417:523–526.

    Article  ADS  Google Scholar 

  • Jiang, Y., and R. MacKinnon. 2000. The barium site in a potassium channel by X-ray crystallography. J. Gen. Physiol. 115:269–272.

    Article  Google Scholar 

  • Jordan, P.C. 2005. Semimicroscopic modeling of permeation energetics in ion channels. IEEE Trans. Nanobiosci. 4:94–101.

    Article  Google Scholar 

  • Jordan, P.C., M.B. Partenskii, and V. Dorman. 1997. Electrostatic influences on ion— water correlation in ion channels. Prog. Cell Res. 6:279–293.

    Google Scholar 

  • Ketchem, R., B. Roux, and T. Cross. 1997. High-resolution polypeptide structure in a lamellar phase lipid environment from solid state NMR derived orientational constraints. Structure 5:1655–1669.

    Article  Google Scholar 

  • King, G., and A. Warshel. 1989. A surface constrained all-atom solvent model for effective simulations of polar solutions. J. Chem. Phys. 91:3647–3661.

    Article  ADS  Google Scholar 

  • Kornyshev, A.A. 1988. Solvation of a metal surface. In: The Chemical Physics of Solvation. R.R. Dogonadze, E.Kálmán, A.A. Kornyshev, and J. Ulstrup, editors. Elsevier, Amsterdam, pp. 355–400.

    Google Scholar 

  • Levitt, D.G. 1986. Interpretation of biological ion channel flux data—Reaction-rate versus continuum theory. Annu. Rev. Biophys. Biophys. Chem. 15:29–57.

    Article  Google Scholar 

  • Luzhkov, V.B., and J. Ã…qvist. 2001. K+/Na+ selectivity of the KcsA potassium channel from microscopic free energy perturbation calculations. Biochim. Biophys. Acta 1548:194–202.

    Article  Google Scholar 

  • MacKerell, A.D., D. Bashford, M. Bellott, R.L. Dunbrack, J.D. Evanseck, M.J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F.T.K. Lau, C. Mattos, S. Michnick, T. Ngo, D.T. Nguyen, B. Prodhom, W.E. Reiher, B. Roux, M. Schlenkrich, J.C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, and M. Karplus. 1998. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102:3586–3616.

    Google Scholar 

  • Miloshevsky, G.V., and P.C. Jordan. 2004. Anion pathway and potential energy pro- files along curvilinear bacterial ClC Cl+ pores: Electrostatic effects of charged residues. Biophys. J. 86:825–835.

    Article  ADS  Google Scholar 

  • Morais-Cabral, J.H., Y. Zhou, and R. MacKinnon. 2001. Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature 414:37–42.

    Article  ADS  Google Scholar 

  • Moy, G., B. Corry, S. Kuyucak, and S.H. Chung. 2000. Tests of continuum theories as models of ion channels. I. Poisson—Boltzmann theory versus Brownian dynamics. Biophys. J. 78:2349–2363.

    Article  Google Scholar 

  • Neyton, J., and C. Miller. 1988a. Discrete Ba2+ block as a probe of ion occupancy and pore structure in the high-conductance Ca2+ -activated K+ channel. J. Gen. Physiol. 92:569–586.

    Article  Google Scholar 

  • Neyton, J., and C. Miller. 1988b. Potassium blocks barium permeation through a calcium-activated potassium channel. J. Gen. Physiol. 92:549–567.

    Article  Google Scholar 

  • Noskov, S.Y., S. Berneche, and B. Roux. 2004. Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature 431:830–834.

    Article  ADS  Google Scholar 

  • Papazyan, A., and A. Warshel. 1998. Effect of solvent discreteness on solvation. J. Phys. Chem. B. 102:5348–5357.

    Article  Google Scholar 

  • Partenskii, M.B., and P.C. Jordan. 1992. Theoretical perspectives on ion-channel electrostatics: Continuum and microscopic approaches. Q. Rev. Biophys. 25:477–510.

    Article  Google Scholar 

  • Pauling, L. 1960. The Nature of the Chemical Bond, 3rd Ed. Cornell University Press, Ithaca, NY.

    Google Scholar 

  • Smythe, W.R. 1968. Static and Dynamic Electricity, 3rd Ed. McGraw-Hill, New York.

    Google Scholar 

  • Thompson, N., G. Thompson, C.D. Cole, M. Cotten, T.A. Cross, and D.D. Busath. 2001. Noncontact dipole effects on channel permeation. IV. Kinetic model of 5F-Trp13 gramicidin A currents. Biophys. J. 81:1245–1254.

    Article  Google Scholar 

  • vanGunsteren, W.F., and H.J.C. Berendsen. 1987. Groningen Molecular Simulations (GROMOS) Library Manual. Biomos, Groningen, NL.

    Google Scholar 

  • Warshel, A. 1979. Calculations of chemical processes in solutions. J. Phys. Chem. 83:1640–1652.

    Article  Google Scholar 

  • Yellen, G. 1984. Relief of Na+ block of Ca2+-activated K+ channels by external cations. J. Gen. Physiol. 84:187–199.

    Article  Google Scholar 

  • Zhou, Y., J. H. Morais-Cabral, A. Kaufman, and R. MacKinnon. 2001. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Ã… resolution. Nature 414:43–48.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Jordan, P.C. (2007). A Mesoscopic–Microscopic Perspective on Ion Channel Permeation Energetics: The Semi-Microscopic Approach1 . In: Chung, SH., Andersen, O.S., Krishnamurthy, V. (eds) Biological Membrane Ion Channels. Biological And Medical Physics Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/0-387-68919-2_14

Download citation

Publish with us

Policies and ethics