Skip to main content

SCANNING TUNNELING SPECTROSCOPY (STS)

  • Chapter
Handbook of Applied Solid State Spectroscopy

Abstract

The nanoscale world is exciting because it is governed by rules different than those in the macroscopic, or even microscopic, realm. It is a world where quantum mechanics dominates the scene and events on the single molecule— or even single atom—scale are critical. What we know about the behavior of material on our scale is no longer true on the nanometer scale and our formularies must be rewritten. In order to study this quantum world, a quantum mechanical probe is essential. Electron tunneling provides such a quantum mechanical tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hurst, H.G. & Ruppel, W. (1964) Zeitschrift fuer Naturforschung 19a, 573–579.

    ADS  Google Scholar 

  2. Lambe, J. & Jaklevic, R.C. (1968) Physical Review 165, 821–832. (These authors are the fathers of all tunneling spectroscopy.)

    ADS  Google Scholar 

  3. Thomas, D.E. & Klein, J.M. (1963) Rev. Sci. Instrum. 34, 920–924.

    ADS  Google Scholar 

  4. Jaklevic, Robert C., Lambe, John. (1966) Physical Review Let. 17, 1139–1140.

    ADS  Google Scholar 

  5. Hansma, P.K., Ed. (1982) Tunneling Spectroscopy, Plenum: New York.

    Google Scholar 

  6. Hipps, K.W. & Mazur, U. (1993) J. Phys. Chem. 97, 7803–7814.

    Google Scholar 

  7. Mazur U. & Hipps K.W. (2001) Inelastic electron tunneling spectroscopy, in Handbook of Vibrational Spectroscopy, John Chalmers & Peter Griffiths, Volume 1. John Wiley and Sons 812–829.

    Google Scholar 

  8. Hamers, R.J. (1996) J. Phys. Chem. 100, 13103–13120.

    Google Scholar 

  9. Giancarlo, L.C., Fang, H., Avila, L., Fine, L.W., Flynn & George, W. (2000) J. Chem. Educ. 77, 66–71.

    Google Scholar 

  10. Hamers, R.J. (1989) Ann. Rev. Phys. Chem. 40, 531–59.

    ADS  Google Scholar 

  11. Lehmpuhl, D.W. (2003) J. Chem. Educ. 80, 478.

    Google Scholar 

  12. Guntherodt, H.-J. & Wiesendanger, R. (1992) Scanning Tunneling Microscopy I. Springer Verlag, Berlin.

    Google Scholar 

  13. Guntherodt, H.-J. & Wiesendanger, R. (1992) Scanning Tunneling Microscopy II, Springer Verlag, Berlin.

    Google Scholar 

  14. Magonov, S.N. & Whangbo, M.H. (1996) Surface Analysis with STM and AFM. VCH, New York.

    Google Scholar 

  15. Stroscio, J.A. & Kaiser, W.J. (1993) Scanning Tunneling Microscopy. Academic Press, New York.

    Google Scholar 

  16. Meyer, E., Jarvis, S.P. & Spencer, N.D. (2004) Scanning probe microscopy in materials science. In MRS Bull. 29 (7).

    Google Scholar 

  17. Bhushan, B., Fuchs, H. & Hosaka, S. (2004) Applied Scanning Probe Methods. Springer-Verlag, Berlin.

    Google Scholar 

  18. Bonnel, D. (2000) John Wiley and Sons, Scanning Probe Microscopy and Spectroscopy. New York.

    Google Scholar 

  19. Bard, AJ. & Mirkin, M.V. (2001) Scanning Electrochemical Microscopy. Marcel Dekker New York.

    Google Scholar 

  20. Young, R., Ward, J. & Scire, F. (1971) Phys. Rev. Lett. 27, 922.

    ADS  Google Scholar 

  21. Binnig, G. & Rohrer, H. (1982) Hen. Phys. Acta 55, 726.

    Google Scholar 

  22. Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. (1983) Phys. Rev. Lett. 50, 120.

    ADS  Google Scholar 

  23. Binnig, G. & Rohrer, H. (1987) Rev. Mod. Phys. 59, 615.

    ADS  Google Scholar 

  24. Veeco Metrology (formerly Digital Instruments), 112 Robin Hill Road, Santa Barbara, CA 93117. http://www.veeco.com/.

    Google Scholar 

  25. McAllister Technical Services, West 280 Prairie Avenue, Coeur d'Alene, ID 83815. http://www.mcallister.com/.

    Google Scholar 

  26. RHK Technology, 1050 East Maple Road, Troy, MI 48083. http://www.rhk-tech.com/.

    Google Scholar 

  27. Molecular Imaging, 4666 S. Ash Avenue, Tempe, Arizona 85282. http://www. molec.com/.

    Google Scholar 

  28. Asylum Research, 6310 Hollister Ave, Santa Barbara, CA 93117. www.Asylum Research.com.

    Google Scholar 

  29. Novascan Technologies, Inc. 131 Main Street, Ames, IA 50010. http://www. novascan.com/.

    Google Scholar 

  30. Quesant. 29397 Agoura Road, Suite 104, Agoura Hills, Ca 91301. http://www. quesant.com/.

    Google Scholar 

  31. Omicron, NanoTechnology GmbH, Limburger Str. 75, 65232 Taunusstein, Germany. http://www.omicron.de/.

    Google Scholar 

  32. WITec GmbH. Hoervelsinger Weg 6, 89081 Ulm, Germany, http://www.witec.de/.

    Google Scholar 

  33. Nanosurf AG, Grammetstrasse 14, CH-4410 Liestal, Switzerland. http://www. nanosurf.com/.

    Google Scholar 

  34. Nanoscience Instruments, Inc. 9831 South 51st Street, Suite Cl 19, Phoenix, AZ 85044. http://www.nanoscience.com/.

    Google Scholar 

  35. Nanotech Electronica, Parque Cientifico de Madrid. Pabellon C, UAM, Cantoblanco E-28049 Madrid Spain http://www.nanotec.es/.

    Google Scholar 

  36. NT-MDT Co., Zelenograd, Moscow, 124482, Russia korp 317 A, P O 158. http://www.ntmdt.ru/.

    Google Scholar 

  37. Danish Micro Engineering A/S. Transformervej 12, DK-2730 Herlev, Denmark. http://www.dme-spm.dk/.

    Google Scholar 

  38. JPK Instruments AG. Bouchestrasse 12, 12435 Berlin, Germany, http://www.jpk-instruments.de/.

    Google Scholar 

  39. Attocube systems AG. Viktualienmarkt 3, D-80331 Munchen, Germany. www.attocube.com.

    Google Scholar 

  40. PSIA, Induspia 5F, Sang-Daewon-Dong 517–13, Sungnam 462–120, Korea. http://www.advancedspm.com/.

    Google Scholar 

  41. Surface Imaging Systems (S.I.S.), Rastersonden- und Sensormesstechnik GmbH, Kaiserstrasse 100 (Technologiepark Herzogenrath, TPH), D-52134 Herzogenrath, Germany, http://www.sis-gmbh.com/.

    Google Scholar 

  42. Triple-O Microscopy GmbH. Behlertstrasse 26, D-14469 Potsdam, Germany. http://www.triple-o.de/.

    Google Scholar 

  43. Budget Sensors, 6, Kestenova Gora Str., 1404 Sofia, Bulgaria. http://www. budgetsensors.com/.

    Google Scholar 

  44. Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. (1982) Appl. Phys. Lett. 40, 178.

    ADS  Google Scholar 

  45. Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. (1982) Appl. Phys. Lett. 49, 57.

    Article  Google Scholar 

  46. Smith, R.L. & Rohrer, G.S. (2001) In Scanning Probe Microscopy and Spectroscopy, Ed: Bonnell, D. Chapter 6 John Wiley and Sons, New York.

    Google Scholar 

  47. Muller, W.E. & Tsong, T.T. (1969) Field Ion Microscopy, American Elsevier: New York.

    Google Scholar 

  48. Bowkett, K.M. & Smith, D.A. (1970) In Field Ion Microscopy Vol. 2, Amelinckx, S., Gevers, R., Nihoul, J., Ed., Defects in cxrystalline solids. North Holland: Amsterdam.

    Google Scholar 

  49. Nam, A.J., Teren, A., Lusby, T.A. & Melmed, A.J. (1995) Journal of Vacuum Science & Technology B, 13, 1556–9.

    ADS  Google Scholar 

  50. Weinstein, V., Slutzky, M., Arenshtam, A. & Ben-Jacob, E. (1995) Review of Scientific Instruments 66, 3075–6.

    ADS  Google Scholar 

  51. Gueell, A.G., Diez-Perez, I., Gorostiza, P. & Sanz, F. (2004) Analytical Chemistry 76, 5218–5222.

    Google Scholar 

  52. Fainchtein, R., Zarriello, P.R. (1992) Ultramicroscopy 42–44, 1533–7.

    Google Scholar 

  53. Heben, M.J., Dovek, M.M., Lewis, N.S., Penner, R.M. & Quate, C.F. (1988) Journal of Microscopy 152 (3), 651–61.

    Google Scholar 

  54. Nagahara, L.A., Thundat, T. & Lindsay, S.M. (1989) Review of Scientific Instruments 60, 3128–30.

    ADS  Google Scholar 

  55. Baykul, M.C. (2000) Materials Science & Engineering B, 74, 229–233.

    Google Scholar 

  56. Ren, B., Picardi, G. & Pettinger, Bruno. (2004) Review of Scientific Instruments 75, 837–841.

    ADS  Google Scholar 

  57. Fried, G.A., Wang, X.D. & Hipps, K.W. (1993) Rev. Sci. Instrum. 64, 1495–1501.

    ADS  Google Scholar 

  58. Iwami, M., Uehara, Y. & Ushioda, S. (1998) Review of Scientific Instruments 69, 4010–4011.

    ADS  Google Scholar 

  59. Cavallini, M. & Biscarini, F. (2000) Review of Scientific Instruments 71, 4457–4460.

    ADS  Google Scholar 

  60. Mendez, J., Luna, M. & Baro, A.M. (1992) Surface Science 266, 1–3, 294–8.

    ADS  Google Scholar 

  61. Zhang, R. & Ivey, D.G. (1996) Journal of Vacuum Science & Technology B, 14, 1–10.

    ADS  Google Scholar 

  62. Oliva, A.I., Romero G.A., Pena, J.L., Anguiano, E. & Aguilar, M. (1996) Review of Scientific Instruments 67, 1917–1921.

    ADS  Google Scholar 

  63. Obbligato Objectives, 68 Corporate Drive Suite 2025, Toronto, Ontario, Canada M1H 3H3. http://www.obbligato.com/

    Google Scholar 

  64. Ekvall, I., Wahlstrom, E., Claesson, D., Hakan, O., Olsson, E. (1999) Meas. Sci. Technol. 10, 11–18.

    ADS  Google Scholar 

  65. Hockett, L.A., Creager, S.E. (1993) Rev. Sci. Instrum. 64, 263–264.

    ADS  Google Scholar 

  66. Paparazzo, E., Moretto, L., Selci, S., Righini, M. & Fame, I. (1999) Vacuum 52, 421–426.

    Google Scholar 

  67. Ottaviano, L., Lozzi, L. & Santucci, S. (2003) Review of Scientific Instruments 74, 3368–3378.

    ADS  Google Scholar 

  68. Chen, C.J. (1993) Introduction to Scanning Tunneling Microscopy, Oxford University: New York.

    Google Scholar 

  69. Kaiser, W.J. & Jaklevic, R.C. (1987) Surface Science 181, 55–68.

    ADS  Google Scholar 

  70. Everson, M.P., Jaklevic, R.C. & Shen, W. (1990) J. Vac. Sci. Tech. A, 8, 3662–5.

    ADS  Google Scholar 

  71. Kuk, Y., Silverman & P.J. (1990) J. Vac. Sci. Tech. A, 8, 289–92.

    ADS  Google Scholar 

  72. Kuk, Y. (1992) Springer Series in Surface Sciences 20, 17–37.

    Google Scholar 

  73. Fonden, T., Papadia, S. & Persson, M. (1995) Journal of Physics: Condensed Matter 7, 2697–716.

    ADS  Google Scholar 

  74. Hoermandinger, G. (1994) Physical Review B, 49, 13897–905.

    ADS  Google Scholar 

  75. Doyen, G. & Drakova, D. (1997) Progress in Surface Science 54, 249–276.

    ADS  Google Scholar 

  76. Bischoff, M.M.J., Konvicka, C., Quinn, A.J., Schmid, M., Redinger, J., Podloucky, R. Varga, P. & van Kempen, H. (2001) Physical Review Letters 86, 2396–2399.

    ADS  Google Scholar 

  77. Himpsel, F.J., Jung, T., Schlittler, R., Gimzewski, Jim K. (1996) Japanese Journal of Applied Physics, Part 1 35, 3695–3699.

    Google Scholar 

  78. Bode, M., Pascal, R., Wiesendanger, R. (1996) Applied Physics A, 62, 571–573.

    Article  Google Scholar 

  79. Biedermann, A., Genser, O., Hebenstreit, W., Schmid, M., Redinger, J., Podloucky, R. & Varga, P. (1996) Physical Review Letters 76, 4179–4182.

    ADS  Google Scholar 

  80. Mills, G., Wang, B., Ho, W. & Metiu H. (2004) J. Chem. Phys. 120, 7738–40.

    ADS  Google Scholar 

  81. Crommie, M.F., Lutz, C.P., Eigler, D.M. & Heller, E.J. (1995) Surface Review and Letters 2, 127–37.

    ADS  Google Scholar 

  82. Wiesendanger, R. & Bode, M. (2001) Solid State Communications 119, 341–355.

    ADS  Google Scholar 

  83. Pietzsch, O., Kubetzka, A., Bode, M. & Wiesendanger, R. (2001) Science 292, 2053–2056.

    ADS  Google Scholar 

  84. Hamers, R.J., Tromp, R.M. & Demuth, I.E. (1986) Surf. Sci. 56, 1972–75.

    Google Scholar 

  85. Hipps, K.W. & Scudiero, L. (2005) J. Chem. Ed. 82, 704–711.

    Article  Google Scholar 

  86. Hipps, K.W. & Peter, S.L. (1989) J. Phys. Chem. 93, 5717–5722.

    Google Scholar 

  87. Hipps, K.W., Barlow, D.E. & Mazur, U. (2000) J. Phys. Chem. B 104, 2444–2447.

    Google Scholar 

  88. Hipps, K.W. & Mazur, U. (1988) Rev. Sci. Instmm. 59, 1903–1905.

    ADS  Google Scholar 

  89. Hipps, K.W. & Mazur, U. (1987) Rev. Sci. Instmm. 58, 265–268.

    ADS  Google Scholar 

  90. Seman, T.R. & Mallik, R.R. (1999) Rev. Sci. Instmm. 70, 2808–2814.

    ADS  Google Scholar 

  91. Hipps, K.W. (1988) J. Phys. Chem. 93, 5958–5960.

    Google Scholar 

  92. Mazur, U. & Hipps, K.W. (1994) J. Phys. Chem. 98, 5824–5829.

    Google Scholar 

  93. Mazur, U. & Hipps, K.W. (1995) J. Phys. Chem. 99, 6684–6688.

    Google Scholar 

  94. Mazur, U., Hipps, K.W. (1999) J. Phys. Chem. B, 103, 9721–9727.

    Google Scholar 

  95. Deng, W. & Hipps, K.W. (2003) J. Phys. Chem. B, 107, 10736–10740.

    Google Scholar 

  96. Scudiero, L., Barlow, D.E., Mazur, U. & Hipps, K.W. (2001) JACS, 123, 4073–4080.

    Google Scholar 

  97. Scudiero, L., Barlow, D.E. & Hipps, K.W. (2000) J. Phys. Chem. B, 104, 11899–11905.

    Google Scholar 

  98. Stipe, B.C., Rezaei, M. A. & Ho, W. (1998) Science 280, 1732–1735.

    ADS  Google Scholar 

  99. Gaudioso, J. & Ho, W. (2001) J. Amer. Chem. Soc. 123, 10095–10098. Ho, W.; Qiu X.; Nazin, G.V. (2004) 92, 206102.

    Google Scholar 

  100. Moresco, F., Meyer, G. & Rieder, K.H. (1999) Mod Phys. Lett. B, 13, 709–715.

    ADS  Google Scholar 

  101. Scudiero, L., Barlow, D.E. & Hipps, K.W. (2002) J. Phys. Chem. B, 106, 996–1003.

    Google Scholar 

  102. Pascual, J.I., Gomez-Herrero, J., Sanchez-Portal, D. & Rust, H.P. (2002) J. Chem. Phys. 117, 9531–9534.

    ADS  Google Scholar 

  103. Brousseau, J.L., Tian, K., Gauvin, S., Leblanc, R.M. & Delhaes, P. (1993) Chem. Phys. Lett. 202, 521–7.

    ADS  Google Scholar 

  104. Nolen, S. & Ruggiero, S.T. (1999) Chem. Phys. Lett. 300, 656–660.

    ADS  Google Scholar 

  105. Komeda, T., Kim, Y., Fujita, Y., Sainoo, Y. & Kawai, M. (2004) J. Chem. Phys. 120, 5347–5352.

    ADS  Google Scholar 

  106. Pascual, J.I., Lorente, N., Song, Z., Conrad, H. & Rust, H.-P. (2003) Nature 423, 525–528.

    ADS  Google Scholar 

  107. Komeda, T., Kim, Y. & Kawai, M. (2002) Surf. Sci. 502–503, 12–17.

    Google Scholar 

  108. Hipps, K.W. & Hoagland, J.J. (1991) Langmuir 7, 2180–2186.

    Google Scholar 

  109. Sumi, H. (1998) J. Phys. Chem. B, 102, 1833–1844.

    Google Scholar 

  110. Kuznetsov, A.M. & Ulstrup, J. (2000) J. Phys. Chem. A, 104, 11531–11540.

    Google Scholar 

  111. Schmickler, W. & Tao, N. (1997) Electrochimica Acta 42, 2809–2815.

    Google Scholar 

  112. Han, W., Durantini, E.N., Moore, T.A., Moore, A.L., Gust, D., Rez, P., Letherman, G., Seely, G., Tao, N. & Lindsay, S.M. (1997) J. Phys. Chem. B, 100, 10719–10725.

    Google Scholar 

  113. Loutfy, R.O., Hsiao, C.K., Ong, B.S. & Keoshkerian, B. (1984) Can. J. Chem. 62, 1877–86.

    Google Scholar 

  114. Richardson, D.E. (1990) Inorg. Chem. 29, 3213–23.

    Google Scholar 

  115. Mazur, U. & Hipps, K.W. (1994) J. Phys. Chem. 98, 8169–8172.

    Google Scholar 

  116. Hill, I.G., Kahn, A., Soos, Z.G. & Pascal, Jr. R.A. (2000) Chem. Phys. Lett. 327, 181–188.

    ADS  Google Scholar 

  117. Scudiero, L., Hipps, K.W. & Barlow, D.E. (2003) J. Phys. Chem. B, 107, 2903–2909.

    Google Scholar 

  118. Barlow, D.E., Scudiero, L. & Hipps, K.W. (2004) Langmuir 20, 4413–21.

    Google Scholar 

  119. Westcott, B.L., Gruhn, N., Michelsen, L. & Lichtenberger, D. (2000) J. Am. Chem. Soc. 122, 8083–89.

    Google Scholar 

  120. Ishii, H. & Seki, K. (1997) Trans. Electr. Dev. 44, 1295–1301.

    ADS  Google Scholar 

  121. Ishii, H., Sugiyama, K., Ito, E. & Seki, K. (1999) Advanced Materials 11, 605–625.

    Google Scholar 

  122. Gao, W. & Kahn, A. (2003) J. Appl. Phys. 94, 359–366.

    ADS  Google Scholar 

  123. Yan, L. & Gao, Y. (2002), Thin Solid Films 417, 101–106.

    ADS  Google Scholar 

  124. Schmidt, A., Armstrong, N.R., Goeltner, C. & Mullen, K. (1994) J. Phys. Chem. 98, 11780.

    Google Scholar 

  125. Tsiper, E.V., Soos, Z.G., Gao, W. & Kahn, A. (2002) Chemical Physics Letters 360, 47–52.

    ADS  Google Scholar 

  126. Plihal, M. & Gadzuk, J.W. (2001) Phys. Rev. B: Condens. Matter Mater. Phys. 63, 085404/1.

    ADS  Google Scholar 

  127. Onipko, A.I., Berggren, K.-F., Klymenko, Yu O., Malysheva, L.I., Rosink, J.J.W.M., Geerligs, L.J., van der Drift, E. & Radelaar, S. (2000) Phys. Rev. B: Condens. Matter Mater. Phys. 61, 11118.

    ADS  Google Scholar 

  128. Snyder, S.R. & White, H.S. (1995) J. Electroanyl. Chem. 394, 177.

    Google Scholar 

  129. Muller, A.-D., Muller, F. & Hietschold, M. (1999) Appl. Phys. Lett. 74, 2963.

    ADS  Google Scholar 

  130. Gasparov, V., Riehl-Chudoba, M., Schroter, M. & Richter, W. (2000) Europhys. Lett. 51, 527.

    ADS  Google Scholar 

  131. Schmickler, W.J. (1990) Electroanal. Chem. 296, 283.

    Google Scholar 

  132. Bakkers, E.P., Hens, Z., Kouwenhoven, L.P. Gurevich, L. & Vanmaekelbergh, D. (2002) Nanotechnology 13, 258–262.

    ADS  Google Scholar 

  133. Katz, D., Millo, O., Kan, S. & Banin, U. (2001) Appl. Phys. Lett. 79 117–119.

    ADS  Google Scholar 

  134. Stroscio, J.A., Feenstra, R.M. & Fein, A.P. (1986) Phys. Rev. Lett. 57, 2579.

    ADS  Google Scholar 

  135. Feenstra, R.M. (1994) Phys. Rev. B, 50, 4561.

    ADS  Google Scholar 

  136. Stroscio, J.A., Feenstra, R.M., Stroscio, J.A. & Kaiser, W.J. (1993) Scanning tunneling microscopy; Methods Expermental Physics. Vol. 27 (Academic, New York).

    Google Scholar 

  137. Ukraintsev, V.A. (1996) Phys. Rev. B, 53, 11176.

    ADS  Google Scholar 

  138. Mann, C. & Barnes, K. (1970) Electrochemical Reactions in Nonaqueous Systems. Marcel Dekker, New York.

    Google Scholar 

  139. Nenner, I. & Schulz, G.J. (1975) Chem. Phys. 62, 1747. (Hg pool taken to be +.52 vs SCE.).

    ADS  Google Scholar 

  140. Bergman, I. (1954) Trans. Faraday Soc. 50, 829.b (Corrected to SCE by subtracting 0.45V.).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Hipps, K. (2006). SCANNING TUNNELING SPECTROSCOPY (STS). In: Vij, D. (eds) Handbook of Applied Solid State Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/0-387-37590-2_7

Download citation

Publish with us

Policies and ethics